

Real world instances seen to have better performances and worst case instances are hardly encountered". > Linear programming > Satisfiability (Given a Boolean formula, we seek a satisfiable assignment) "Average-case analysis". - "Probability distributions over instances". }"Tricky" 'Aprilon not clear on how to define this Problem: "No efficient way to define prob". "Cannot gauge if equal prob. is the right notion".

" Worst-case analysie".

- "An algosofthm is efficient if it achieves qualitatively better performance, than brute-force approach" in the worst case.

 \rightarrow Qn: Can you give an algo to count the no of triangles in an undir graph? $\hookrightarrow O(n^{w})$ in the worst-case. $i_1, i_2, i_3 \in V(G); (i_1, i_3), (i_2, i_3) and (i_3, i_4) \in E(G).$

For all nodes

$$\rightarrow go$$
 to the neighbour
for each neighbour
 $O(v^3)$

→ Brute-force: Run through $\binom{|V|}{3}$ many subsets of V. - (i_1, i_2, i_3) . Check if $(i_1, i_2), (i_2, i_3)$ and (i_3, i_4) $\in E$. A, A^2, A^3 $O(n^{10})$ → Strassen $u_2 = log_27$ $O(n^3), O(n^{log_27}), ..., O(n^{2\cdot3\cdot\cdot})$ (Alman $u_2 > 2\cdot37\cdots$ Virginia-Williams] Open-problem: Show that matrix mult. can be done in tome $O(n^{2+\epsilon})$ where ϵ is as close to as possible.

"Worst-case does not mean brute-force".

Notion of efficiency: Polynomial time.

→ We say an algorithm A is polynomial time computable if \exists constants $c, d \in \mathbb{R}_{p_0}$ and $n_p \in \mathbb{N}$ sit on every input of size $n \ge n_0$, the algorithm's minning time is at most c, n^d .

→ Sortfug is in polytome.
$$O(n^2)$$
 to the comparisons.
A₁ $n = 100$ 10000 comparisons n^2
A₂ " 30000 — 3 n^2
A₃ " 90000 comparisone. $\frac{n^3g}{100} = n^2g$
(2) < n^{1000} $\forall n < 1000$ }.
(2) < n^{1000} $\forall n < 1000$ }.
(2) < n^{1000} $\forall n < 1000$ }.
(2) < n^{1000} better ? n
No sit $\forall n > n_0$, $2^n > n^{1000}$.
Asymptotic analysis: O, Ω, Θ
N , $f(n)$
T(n) $\leq f(n)$.
Sit $\forall n > n_0, T(n) \leq f(n)$.
 $\exists a const c and noeN$
sit $\forall n > n_0, T(n) \leq c.f(n)$.

- If sorting is taking $O(n^2)$ then, $\exists a \text{ constant } c, n \in \mathbb{N}$ s.t. $\forall n = n_0$, sorting takes at most $c \cdot n^2$ there.
- · Graph algorithms (Chapter 3 of Kleinberg-Tardos)
- · Greedy algorithms (4
- · Divide and Conquer (5
- · Dynamic programming (G) . Network flows (7)
- · NP and computational intractibility
- · Intro to Approx 3 Advanced Algorithms. Random 9 - Advanced Algorithms.

Grading scheme:

- Quiz 1 and 2 — 20%. · Midsenn 20%. End sen 30%. In-class quizzes 15%. Assignment 15%. 3 textbooks

- Klienberg Tandos
- CLRS
- Dasgupta, Papadinitron and Vazirani