Algorithm Analysis and Design. (Monsoon 2022) \rightarrow "Non-interactive system".

- Representation of
- "Less time and space input r Structured input complexity".
- Ex: Array, Adjacency Lost
\rightarrow Bubblesort: $O\left(n^{2}\right)$ tijure and $O(n)$ space. \# of comparssions $n \leftarrow \#$ of elem of the array.
\rightarrow Matrix multiplication: A, B of order $n \times n$.

$$
\begin{array}{cc}
C=A \cdot B \quad & O\left(n^{3}\right) \\
& \uparrow \text { operations. }
\end{array}
$$

$$
i, j \in[1, u]: C_{i j}=\sum_{k=1}^{n} A_{i k} \cdot B_{k j}
$$

n multiplications n additions

Karatsubris
integer milt. $\quad\left[\begin{array}{c}2 \text {-bit numbers, complexity of milt } \\ \sim O(l \log l) .\end{array}\right.$

$$
\zeta \quad n^{2} \cdot n \cdot[0(l \log l)+O(l)]
$$

\rightarrow TODD: $\quad O$ (?)
Question: "When is an algorithm efficient?"
\rightarrow Optimised Home and space complexity.
\rightarrow "Minimum no. of operations". $\}$

\rightarrow Qnicksort: Choose to pivot that breaks array into two "halves".
\rightarrow First element
"Worst-case running time".

Real world instances seem to have better performances and worst case instances are hardly encountered".
\rightarrow Linear programinbing
\rightarrow Satisfrability (Given a Boolean formula, we seek a satisfiable assignment)
"Average-case analysis".
\rightarrow "Probability distifbultons over instances". $\underbrace{\text { "Tricky" }}$ Aproort not clear on how to define this

Problem: "No efficient way to define prob",
or
"Cannot gauge if equal prob. is the right notion".
"Worst-case analysis".
\rightarrow "An algorithm is efficient if it achieves qualitatively better performance, than brute-force approach' in the worst case.
\rightarrow Qu: Can you give an algo to count the no of triangles in an undir. graph?
$\rightarrow O\left(n^{w}\right)$ in the worst-case.

$$
i_{1}, i_{2}, i_{3} \in V(G) ;\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right) \text { and }\left(i_{3}, i_{1}\right) \in E(G) \text {. }
$$

\rightarrow Brute-force: Run through ($\left.\begin{array}{c}|V| \\ 3\end{array}\right)$ many subsets of V.

$$
\begin{array}{r}
\rightarrow\left(i_{1}, i_{2}, i_{3}\right) \text {. check if }\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right) \text { and }\left(i_{3}, i_{1}\right) \\
.
\end{array}
$$

$$
\underbrace{A, A^{2}, A^{3}} O\left(n^{w^{6}}\right)^{\text {matrix }} \rightarrow \text { Strassen } \quad \omega=\log _{2}^{7}
$$

Open-problem: Show that matin ult. can be done in tome $O\left(n^{2+\varepsilon}\right)$ where ε is as close to 0 as possible.
"Worst-case does not always mean bute-force".

Notion of efficiency: Polynomial tome.
\rightarrow We say an algorithm A is polynomial tome computable if \exists constants $c, d \in \mathbb{R}_{>0}$ and $n_{0} \in N$ st on every input of size $n \geqslant n_{0}$, the algorithm's running time is at most c. n^{d}.
\rightarrow Sorting is in polytime. $O\left(\underline{n}^{2}\right)$ try ne comparisons.

$$
\begin{array}{lll}
A_{1} n=100 & 10000 \text { comparisons } & n^{2} \\
A_{2} " 1 & 30000 \quad-\quad 90000 \text { comparisons } & 3 n^{2} \\
A_{3} " & & \\
\longrightarrow & \frac{n^{3} g}{100} \text { or } n^{2} \cdot 9
\end{array}
$$

$$
\left.2^{n}<n_{1000}^{1000} \quad \forall \frac{n}{\operatorname{login}}<1000\right\}
$$

Qu: 2^{n} or n^{1000} better? $\} n$

$$
n_{0} \text { st } \forall \underline{n} \geqslant n_{0}, 2^{n} \geqslant n^{100}
$$

$$
\frac{n_{n} x_{0}}{\log _{0} n_{0}}
$$

Asymptotic analysis: $0, \Omega, \theta$

$$
\begin{array}{r|r|r}
\\
& f(n) & \forall n \geqslant n_{0}, T(n) \leqslant f(n) . \\
T(n) \leqslant f(n) . & -T(n)=O(f(n)) \\
& \exists a \text { cost } c \text { and } n_{0} \in \mathbb{N} \\
& \text { s.t } \forall n \geqslant n_{0}, T(n) \leqslant c \cdot f(n) .
\end{array}
$$

[. If sorting is taking $O\left(n^{2}\right)$ then, \exists a constant $C, n_{0} \in \mathbb{N}$ S.t $\forall n \geqslant n_{0}$, sorting takes at most $c \cdot n^{2}$ time.

- Graph algorithms (Chapte rs of Kleiviberg-Tardos)
- Greedy algorithms (

$$
4
$$

- Divide and Conquer (
- Dynambe programming (
- Network flows

$$
6
$$

- NP and computational intractability
- Intro to $\left.\begin{array}{l}\text { Approx } \\ \\ \\ \text { Randoms } \\ \text { Quantum }\end{array}\right\} \rightarrow$ Advanced Algorithms.

Grading scheme:

Quiz 1 and 2 -	20%
Midsem	20%
End sem	30%
ln-class quizzes	15%
Assignment	15%

3 textbooks

- Kliemberg Tardos
- CLRS
- Dasgupta, Papadimitron and Vazirain

