Closest pair of points
Distance metric
$\left.\begin{array}{l}\text { Input: } p_{1}, \cdots, p_{n} \\
\text { and distances } \\
\text { between them. }\end{array}\right\}$

| $\left(x_{1}, y_{1}\right)$ | $\left(x_{2}, y_{2}\right)$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\sqrt[l]{1}$ | | p_{3} | | |
| $\sqrt{\left\|x_{2}-x_{1}\right\|^{2}+\left\|y_{2}-y_{1}\right\|^{2}}$ | | | | | defined.

$$
\begin{aligned}
& \quad d\left(p_{i}, p_{j}\right) \geq 0 \text { if } i \neq j \\
& d\left(p_{i}, p_{i}\right)=0 . \\
& \text { Problem from } \\
& \text { Computational Geometinj }
\end{aligned}
$$

Want: Find the pair that has least distance between them.
Algo 1: Look at $d\left(P_{i}, P_{j}\right)$ for all pairs $i \neq j$. $O\left(n^{2}\right)$ tome.

1-dimensional version: Find closest pair of points on a line. \rightarrow Sort the points and then find closest successive points $O(n \log n)$

$$
O(n)
$$

\rightarrow Sort first aust x-coordinates and then y-coordinates if there is a the ust x-coordinates.

Sort the points aust x-coordinates.

Get a solvifon to closest pair of points in $S_{2}: P_{1}^{L}, P_{2}^{L}$ and

$$
\text { in } S_{R}: P_{1}^{R}, P_{2}^{R}
$$

$$
\delta=\min \left\{d\left(P_{1}^{L}, P_{2}^{L}\right), d\left(P_{1}^{R}, P_{2}^{R}\right)\right\} .
$$

1. p_{1}^{L}, p_{2}^{L} is intact a solution.

Claim: Max no. of point's that can appear in this $2 \delta \times 2 \delta$ grid is 16 .
(incl p).

2. \exists points (p, q) set $p \in S_{L}, \quad q \in S_{R}$ and $d(p, q)<\delta$. They will appear in the bond B.

- Sort the points in B in the incr. order of y coordinates

Claim: Given a point $p \in B$, There are at most 15 points $a \overline{\in B}$ s.t y coordinate of $q \geqslant y$ coordinate of p and $d(p, q)<\delta$.
\rightarrow Max distance between any pair of points in a square of size $\frac{\delta}{2} \times \frac{\delta}{2}$ is $\frac{\delta}{2} \times \sqrt{2}<\delta$
If two points exist in the same square, their dist is $<\delta$ and this violates the fact that δ was the min dost in $L \& R$.
\rightarrow Any point above the grid has dist strictly larger than δ.
For each p in the sorted list of points in B: compute distances of p to its 15 succesive points.

Take mim over all these distances.
If the min is $<\delta$ then report that corresponding pair as the closest pair of points
Else, report P_{4}^{L} and P_{2}^{L} as closest pair.
Also:
\rightarrow Sort the given points in incr order of x-coordinates.
\rightarrow Break the problem into two parts by cranking a line $l(1) x$ in the mode.
\rightarrow Obtain solution recursively in both the "halves".
Let δ be the min of both the solutions.
$\rightarrow B \leftarrow$ set of points that are at most δ dist away from
l (x-coordinate vise)
\rightarrow Sort the points in B in incr order of y coordinate.
\rightarrow For each p in the sorted order:
compute dist of p from 15 succ. paints
\rightarrow Take min of all these distances.
If this min $<\delta$ then report this corr. pair as the closest pair of points
Else, report the mim solution obtained from recursion.

Runnbing true $\rightarrow O(n \log n)$.

Herated Matron Product Integer
$M_{1}, M_{2}, \ldots, M_{d} \quad$ each $n \times n$
Simple aldo:

$$
A c c \leftarrow I_{n \times n}
$$

For i in $[1, d]$:
$A c c \leftarrow A c c \times M_{i}$ return Acc.
no. of mulled

Sea: We have one processor computing d matrix malt.

Parallel: we can take $\frac{d}{2}$ processors and each processor needs to do at most $\log _{2} d$ matrix cult.

