Dynamic Programming (conta).

Given a set of requests, we want to get a largest set of compatible requests.

$$\begin{cases} R_1, R_2, \dots, R_n \\ Z_{W_1}, W_2 \dots W_n \end{cases}$$
 S(i) f(i)

Say Rin, ..., Rive ~ compatible } max Z wike Win Wike

Question: Find a subset of compatible req. that has maximum wt.

All greedy strategies
that we discussed
fail.

$$R_1, R_2, ..., R_n$$

 W_1, W_2
 $W_1,$

Case-1: R_n belongs to the optimal set O.
Case-2: does not

$$Case-2:$$
 does not
 $Case-1: R_n \in \Theta$.
 \Rightarrow All those vequests that are not compatible
with R_n do not belong to O.
Let p(j) be the index of the interval set it is
It largest vequest that is compatible not R_j.
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $p(j) = \max \{i | R_i \text{ is compatible not Rj}\},$
 $(1 \text{ otherwords}, R_{pum}, \dots, R_{n-1} \text{ over lap not Rn},$
 $R_n = \frac{R_n}{R_n}, \frac{R_n}{R_n},$
 $R_n = \frac{R_n}{R_n}, \frac{R_n}{R_n},$
 $R_n = \frac{R_n}{R_n}, \frac{R_n}{R_n}, \frac{R_n}{R_n},$
 $R_n = \frac{R_n}{R_n}, \frac{R_n}{R_n}, \frac{R_n}{R_n}, \frac{R_n}{R_n},$
 $R_n = \frac{R_n}{R_n}, \frac{R_n},$

Optimal Optimal solution $(2R_1, ..., R_pm_3) + w_n$ $(2R_1, ..., R_n 3)$

Condétioned on Ruf O.

Case-2: If R_n is not in O, then optimal solution for $\{R_1, \ldots, R_n\}$ is given by optimal solution of $\{R_1, \ldots, R_{n-1}\}$.

$$\begin{array}{l} (\text{opt(u)}) \\ (\text{opt(u)}) \\ = max & \begin{cases} w_n + \text{opt(p(u))} \\ w_n + \text{opt(p(u))} \\ \end{cases} \\ (\begin{cases} R_1, \dots, R_{p(u)} \\ \end{cases} \\ (\begin{cases} R_1, \dots, R_{p(u)} \\ \end{cases} \\ (p_1 \\ \dots \\ p_{p(u-1)} \\ \end{cases} \\ (p_1 \\ \dots \\ p_{n} \notin O. \\ \end{cases} \\ \end{array}$$

 $Opt(j) = Optimal Solution (\{R_1, ..., R_j\})$ $Opt(j) = max \{ w_j + opt(p(j)), opt(j-1) \}$. $\{opt(1), ..., opt(w)\}.$ Preprocessing:

Sort the requests in non-decreasing order of finish times
Compute p() for each request.

Run Home:
· Run Compute-Opt(n). luit a global
Compute-Opt (j): Add mennored and Back Pointers
(veturn max { w; + Compute-Opt(pG)), Compute-Opt(j-1)}.
$\dot{\iota} = D$
< Base case>
While icnnn: <u>Ai</u> M[i] = max { wi + M[p(i)], M[i-1]} // Handle if Ai & Bi: Back-Pointer[i] = i-1 else: Back-Pointer[i] = p(i) // Also add i to an optomal solution lost,
veturn M[j]
\rightarrow Fractional Knapsack. \rightarrow Bin packing.
\rightarrow 0-1 Knapsack. Ifems I_1, \ldots, I_n W_{i_1, \ldots, i_n}