Dynambe Programmbong (Contd).
Question: Compute the shortest sat path in G.
Assumption: No negative cycles.

- Edges from a unde.

Question: What is the max length of the shortest from $s \rightarrow t$ \rightarrow Ansi at most $n-1$.
$\operatorname{Opt}(v, l)$: wit of all vert path of length at most l.
$\operatorname{Opt}(s, n-1):$ - This is what we wont.

Could happen
paths of length at most n-2

$$
\begin{aligned}
& \min \left\{o p t(w, n-2)+C_{\text {sw }}: \omega \operatorname{s\cdot t}(s, w) \in E\right\} \\
& \operatorname{pt}(S, u-1)=\min \left\{\{\operatorname{pot}(s, n-2)\} \cup\left\{\operatorname{opf}(\omega, n-2)+C_{\text {sw }}: \begin{array}{c}
: \omega s-t \\
(s, \omega) \in E
\end{array}\right\}\right.
\end{aligned}
$$

$\widehat{\text { Opt }}(l, v)$: min oof over all $\delta \leadsto v$ paths of length at most l.

$$
\operatorname{opt}(n-1, t)=\min \left\{\begin{array}{l}
\operatorname{opt}(n-2, t) \\
\left\{\operatorname{opt}(n-2, \omega)+c_{w t}:(\omega, t) \in E\right\} .
\end{array}\right.
$$

For each entry of the memoization, we consider all the neighbours of that wide in consideration.

$$
\frac{O\left(n^{2}+n m\right)}{V}
$$

(S)

