Network Flows.

Conservation of flow: Any flow that reaches the node is exactly the flow that leaves it.

Flow problem: Given inputs \rightarrow Graph G=(V,E) and for eveny edge we have a Capacity defined. Properties of capacity: $C(U \rightarrow V) > 0 \forall U \rightarrow V \in E$ and any flow $f(U \rightarrow V)$ must be s.t $0 \leq f(U \rightarrow V) \leq C(U \rightarrow V)$.

Cut(S, V, S): TLet S contain source and T contain dest. $Capacety(S,T) = \sum_{u \in S} \sum_{v \in T} c(u \rightarrow v)$ $Min cut(G) = \min_{s \in V} Capacity(S,T).$

1. For every edge
$$u \rightarrow v \in E$$
, we can define $f(u \rightarrow v)$
flow along the
edge $u \rightarrow v$.
 $o \leq f(u \rightarrow v) \leq c(u \rightarrow v)$ $f(u \rightarrow v) = 0$ if $u \rightarrow v \notin E$.
 $constraints over edges$
2. For any vertex $v \in G$,
 $\sum_{w} f(w \rightarrow v) = \sum_{u} f(v \rightarrow u)$ constraints over
 w $u \neq v$.
 $rade$.
 $f(w \rightarrow v) = \sum_{u} f(v \rightarrow u)$ $u \neq e$.
 $f(w \rightarrow v) = \sum_{u} f(s \rightarrow w)$ subject to 1 and 2
 $\sum_{w} f(u \rightarrow t)$ $f(u \rightarrow t)$ $u \neq e$.
Any flow that constraints. 1 and 2 is called
 $f(u \rightarrow t)$ $u \neq v$ $u \neq v$

$$= \sum_{v \in S} \int f(v \to w) - \sum_{v \in S} \int f(u \to v)$$

$$v \in S \ w \notin S$$

$$= \sum_{v \in S} \int f(v \to w) - \sum_{v \in S} \int f(u \to v)$$

$$v \in S \ w \in T$$

$$\leq \sum_{v \in S} \int f(v \to w) \qquad v \in S \ w \in T$$

$$\leq \sum_{v \in S} \int c(v \to w) \qquad (a + B \ge a)$$

$$v \in S \ w \in T$$

$$= Capacity (S,T) \qquad (a - defn)$$

$$Capacity (S,T) \qquad (a - defn)$$

$$Maximum = \max_{f \in W} \int f(v \to w) \quad (a + b) = max \quad (a + b) =$$

Residual capacity:

$$C_{f}(u \rightarrow v) = \begin{cases} C(u \rightarrow v) - f(u \rightarrow v) & \text{if } u \rightarrow v \in E \\ f(v \rightarrow v) & \text{if } v \rightarrow v \in E \\ 0 & 0/w. \end{cases}$$

$$C_{f}(u,v) = f(v \rightarrow u) = 20$$

$$v \rightarrow u \in E$$