Basso Graph Algorithms Notation:

- $G=(V, E)$
$V=\left\{v_{1}, \ldots, v_{n}\right\}$
$m:=$ \# of edges
$n:=\#$ of vertices.
$E=\left\{e_{1}, \ldots, e_{m}\right\}$ where $e_{i}=\left(v_{i_{1}}, v_{i_{2}}\right)$ for
some $i_{1}, i_{2} \in[n]$.
- Undirected graph: Edges have no orientation. Directed graphs: "have ordenitation.
(direction).
- Move generally- Transportation networks

Running tome
\rightarrow in terms of proms

- Hive opercitons available.
- Social media/networks
- Markov chains
- Knowledge graphs
- Networks - comm. / internet.
- Paths, Cycles, walks \rightarrow Generalize paths and cycles. closed vale.
$v_{i_{1}}, \ldots, v_{i_{k}}, v_{i_{1}}$: If all but $v_{i_{1}}$ are distinct then it is a simple

$$
v_{i_{1}}, \ldots, v_{i_{k}} \text { st } \forall j \quad\left(v_{i_{j}}, v_{i_{j+1}}\right) \in E(G) \text {. }
$$ cycle.

- We shall study "Connectedness" in this lecture.
(undirected)
A_{q} graph G is said to be connected if H pairs u and v in $V(G), \exists$ a path from u to v.

S-t connectivity: Given two vertices s and t, are $\downarrow s$ and t connected.
Via search aborothms (If sand t are in the same).
\rightarrow Breadth First Search
\rightarrow Depth First Search

Breadth First Search (BFS):

- Layer L_{1} consists of all neighbours of
- $\forall j \geqslant 2$, Layer L_{j} contains all nodes that do not belong to $\bigcup_{i<j} L_{i}$ and which have an edge to vertices in L_{j-1}. $\left\{\begin{array}{l}\text { Implicitly there's an ordersing/proority over } \\ \text { edges } \longrightarrow O(m+u) \text { steps. }\end{array}\right.$
(1)

Obs: BFS naturally gives rose to a rooted tree strict.

Obs: $\forall j \geqslant 1$, Layer L_{j} contains those nodes that are exactly distance j away from $s . \Rightarrow$ Shortest s-t path.

Obs: Two nodes s and t are connected if and only if t belongs to some layer in a BFS that starts from S.

Representing grouphs:

- Adjacency matrix:

$$
|V|=n . \quad \text { Space }=O\left(n^{2}\right)
$$

$$
\rightarrow \exists \text { const }
$$

$$
\forall_{1 \leq i, j \leq n ;} \quad A_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E(G) \\ 0 & \text { otherwise }\end{cases}
$$ c sit space used $\leq C \cdot n^{2}$. $\left(n \geqslant n_{0}\right)$.

Nebghbours of vertex v_{k} is given by the $k^{\text {th }}$ row. $\{0,1\}^{n}$.

	1	2	3	4	5
	0	1	1	1	1
2	1	0	1	0	0
3	1	1	0	1	0
4	1	0	1	0	1
5	1	0	0	1	0

- Adjacency Lost:

$$
\lim _{n \rightarrow \infty} \frac{m}{n^{2}} \rightarrow 0 \quad \begin{aligned}
& m=n^{2-\varepsilon} \\
& m<c \cdot n^{2}
\end{aligned}
$$

For each vertex v, maintain a adj list. list of its neighbours.
$N(v)=\{$ list of neighbours of $v\}$.
Size of adj list $=\sum_{v}|N(v)|=2 \mathrm{~m}$.
for all constants c, then use adjacency wist In other woods, m is a magnitude border smaller than n^{2}.

If $m \ll n^{2}$ then adj. Wist is a more space efficient representation.

Claim: Let T be a BFS tree. Let x and y be nodes in T s.t $x \in L_{i}$ and $y \in L_{j}$. Let $(x, y) \in E(G)$. Then i and j differ by at most 4 .
Pf: WES.O.G assume $i \leqslant j$.
Pf: BFS algorithm guarantees that x is at distance i from the root, and y is at a dist. j from the root. Suppose $i<j-1$. But from the BFS algo, after explon6ing x in L_{i}, y is added to L_{i+1} as $(x, y) \in E(G)$. This contradicts $i<j-1$.

Depth First Search.
\rightarrow Strategy is to explove through "leading edges" until you hot a "deadend" and backtrack to a node w/ unexplored neighbours.

$\operatorname{DFS}(u):$

- Mask u as "exploved" and $R \leftarrow R \cup\{u\}$
- For each edge (u, v) incident on u :

If $v==t$ then:
return "found t "

- If v is not 'exploved" then DPS(v)

Extra lines for. For st connectivity.

$$
G_{2}
$$

(4)-Backtrack DFS(4) ends here.
Backtracking to 3. end of DFS (6) and DFS (5).

$$
\begin{aligned}
R= & \{1,2,3,4,5,6\} \\
& \operatorname{DFS}(7)
\end{aligned}
$$

$$
R=\{1,2,3,4,5,6,7\}
$$

$$
D F S(8) .
$$

But by backtracking, we end $\operatorname{DFS}(3), \operatorname{DFS}(2)$ and $\operatorname{DFS}(1)$.

Obs: We are building a tree-Depth first Search tree.

