Network Flows (could.)
$\max _{\pi: \text { sort paths }}\left\{\min _{e \in \Pi} c(e)\right\} . G_{f}: \begin{aligned} & \text { Residual graph } \\ & \text { after } f .\end{aligned}$
Let Δ be a threshold.
Let $G_{f}(\Delta)$ be the graph obtained by deleting all edges of (residual) capacity $<\Delta$.
\rightarrow If \exists a st path in $G_{f}(\Delta)$ then the flow can be augmented by Δ.
\Rightarrow Augmentation of flow by $\Delta \mathrm{im}$ the original
graph.

$$
\left.|c| \leftarrow \min _{w} c(s \rightarrow w), \sum_{n} c(u \rightarrow t)\right\}
$$

SStast with Δ that is maximal power of 2 sit $\Delta\langle | C \mid$.

$$
\Delta=\max \left\{2^{k}\left|2^{k}<|c|\right\} . \quad \Delta \leq F \leq 2 \Delta .\right.
$$

\rightarrow Compute $S \rightarrow$ path and angment the flow until There is no longer a sot path in $G_{f^{\prime}}(\Delta)$.

$$
\begin{aligned}
& \text { 1. Find } S \sim \text { vt path in } G_{f}(\Delta) \text { if it exists. }
\end{aligned}
$$

Consider $G_{f}^{\prime}(\Delta)$ and repeat step 1.
\rightarrow Else, there is (S, T) ant in $G_{f} *(\Delta)$ update Δ to $\frac{\Delta}{2}$ and construct $G_{f}(\Delta / 2)$. Go to step 1.

$$
\Delta=\max \left\{2^{k}\left|2^{k}<|c|\right\} .\right.
$$

if $\Delta=2^{k^{*}}$ then $2^{k^{*}+1} \geqslant|C| \Rightarrow$ No. of reductions literations aust \triangle

$$
\leqslant\left[\log _{2}|c|\right]+1
$$

First step.
Look for swot paths with bottleneck capacity of at least $\frac{1 C l}{2}$ (if they exist).

$$
0 \rightarrow \frac{c}{2} \rightarrow \frac{c}{4}
$$

This approach works better when

$$
\begin{array}{rlr}
O\left(\log _{2}|c|\right. & \underline{L} \cdot(m+n) \leqslant O(|c| \cdot(m+n)) \cdot \\
& \leqslant 2 m & \text { if }|c|=2^{n} \\
O(n \cdot m \cdot(m+n)) n \leq n^{5} & 2^{n} \cdot(m+n) \sim n^{2} \cdot 2^{n} .
\end{array}
$$

Lemma: In each A-phase, the no. of augmentations is at most 2 m .
$S \rightarrow$ Let $|f|$ be the flow at the end of the Δ-phase. Then the ont obtained in $G_{f}(\Delta)$ has capacity at most

$$
|f|+m \cdot \Delta . \quad \operatorname{Cut}_{f}(S, T)
$$

Max flow can at most be $1 \mathrm{f} 1+m \Delta$.

$$
\downarrow \Delta \rightarrow \frac{\Delta}{2} \quad\left|f^{\prime}\right| \geqslant|f|+L^{f} \cdot \frac{\Delta}{2} \cdot \frac{m \Delta}{2}
$$

Let $\mid f^{\prime}$ ' be the flow at the end of the $\frac{\Delta}{2}$-phase.
total

$$
\xrightarrow[\text { in }]{\text { Angmenta }} \xrightarrow{\text { ton, }}|f|-|f| \geqslant L \cdot \frac{\Delta}{2}
$$

$\frac{A}{2}$-phase

$$
\frac{n}{2}
$$

$$
\frac{1}{2}
$$

$$
2
$$

Obtainsing f^{\prime} from from f by doing $L \geqslant \frac{\Delta}{2}$ augmentations.

$$
L \cdot \frac{\Delta}{2} \leq\left|f^{\prime}\right|-|f| \leqslant m \Delta \Rightarrow L \leqslant 2 m
$$

$$
\begin{aligned}
& \text { outsize } \leq 1 f^{\prime} 1+m \cdot \frac{\Delta}{2} \text {. } \\
& L \cdot \frac{\Delta}{2} \leq\left|f^{\prime}\right|-|f| \Omega \leq m \Delta \\
& \left|f^{\prime}\right| \leqslant|f|+m \Delta \Rightarrow \frac{\left|f^{\prime}\right|-|f|}{\frac{\Delta}{2}} \leqslant \frac{m \Delta}{\frac{\Delta}{2}}=2 m .
\end{aligned}
$$

Start:

$$
\left.\frac{|c|}{2}<\Delta \leqslant|c|\right\}
$$

\rightarrow If there is an scot path p then angment the flow with $\operatorname{mim}_{n \rightarrow v \in P}\{c(n \rightarrow v)\}$.

$$
\underbrace{0 \rightarrow \frac{|C|}{2}}_{+\Delta+\min _{n \rightarrow v \in P}\{(C(u \rightarrow v)\}}
$$

Lemma:
Let If be the flow at the end of the Δ-phase. Then the cut obtained in $G_{f}(\Delta)$ has capacity at most

Pf:

Claim: $\quad{ }^{\sim} C_{e}<f_{e}+\Delta v$ and $f_{e}<\Delta$ for $\forall e \in$ ont. for forward

$$
\begin{gathered}
\text { Otherwise } c_{e} \geqslant f_{e}+\Delta v \quad u \rightarrow v \\
v \in S
\end{gathered} \quad \frac{c_{e}-f_{e}}{} \quad \frac{f_{e} \geqslant \Delta}{v^{\prime} \rightarrow f^{\prime \prime} \text { low } u^{\prime}}
$$

An edge \in ant if it can no longer carry a flow of Δ. $\operatorname{in} G_{f}(\Delta)$

$$
\begin{aligned}
& |f|=\text { Flow across }=\sum_{e} f_{e}-\sum_{e^{\prime}} f_{e} \\
& \text { fund. } \\
& \text { edges in } \\
& \text { out } \\
& \Longrightarrow \mathrm{Ce}_{e}<\mathrm{fe}_{e}+\Delta \\
& \begin{array}{ll}
\geqslant & \sum\left(C_{e}-\Delta\right)- \\
e & e^{\prime} \Delta
\end{array} \quad f_{e^{\prime}}<\Delta . \\
& \geqslant \underset{\substack{\text { curd } \\
\text { edges }}}{\sum C_{e}-e^{\prime}} \\
& \geqslant \sum C_{e}-m \Delta \\
& \sum_{\substack{\text { fud } \\
\text { edges }}} c_{e} \leqslant|f|+m \Delta
\end{aligned}
$$

Bipartite matching.

$$
\begin{aligned}
& \left(V_{1}, V_{2}, E\right) \\
G= & (L, R, E)
\end{aligned}
$$

Perfect matching:

$$
\begin{aligned}
\mathbb{T}_{=}=\{ & \left.\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)\right\} \\
& \downarrow
\end{aligned}
$$

x_{i} belongs to exactly one edge in M and
y_{i} belongs to exactly one edge in M.

Thu: If \exists a PM then using maxflow-mincut, we can obtain the PM.
\rightarrow Bipartite matching reduces to finding a flow of value/size n in the updated graph.

