Shortest paths

- $G=(V, E)$

Edge weoghts/lengths/distances

Question: Given $G=(V, E), \quad s, t \in V(G)$, what is the shortest distance between s and t ? What is that path.

Dijkstra's algorithm $(G, L, 8)$
stars node.
lust of weights/lengths of edges $\in R_{\geq 0}$
Output: Return a list of shortest distances of every node from S.
$S \longleftarrow\{s\} ; d(s)=0 / / S$ is the set of all "visited" urdes.
For every $v \neq s \in V$: I/ maintains shortest distance from

$$
d(v)=\infty .
$$ s.for every node

While $S \neq V$:
Select $v \notin S \quad w /$ at least one edge from S set $d^{\prime}(v)=\min _{(u, v) \in E}\left\{d(u)+l_{u, v}\right\}$ is minbinszed. // Greedy

$$
d[v]=d^{\prime}(v)
$$

Add v to S.
Correctness:
Lemma: Consider the set S at an arbitrary point of the algorithm's exemilfon. For all $n \in S, d[v]$ is the shortest son distance.

Proof: Induction on $|S|$.
Base case: $\left|S^{\prime}\right|=1 . S=\{s\} . d(s)=0$.
Induction hypothesis: The statement is true for $\left|S^{\prime}\right|=k$ for some $k \geqslant 1$.

$$
k \leq n-1 \text {. }
$$

\rightarrow Algorithm picks v st $d^{\prime}[v]$ is the minimum over

$$
\begin{aligned}
&\left\{d^{\prime}\left[v^{\prime}\right]: v^{\prime} \in V \backslash S\right\} . \\
& d^{\prime}[v]=\min \left\{d^{\prime}\left[v^{\prime}\right]: v^{\prime} \notin S\right\} .
\end{aligned}
$$

\rightarrow Ago set $d[\theta]$ to $d^{\prime}[\theta]$.

$$
d^{\prime}[u]=\min _{(u, v \in \in E}\left\{d(u)+l_{m, u}\right\} .
$$

 me predecessor that

Algo computed d' vales for all vertices not in S'.
L Ago picked v over $y \Rightarrow d^{\prime}[v] \leqslant d^{\prime}[y]$.
For the sake of contradiction, let the shortest path from s to v be ba $s \sim x-y \sim v$. $y \neq v$.
\rightarrow Since ie was picked no path from stay was shorter than stow v.

$$
\begin{aligned}
& \overbrace{\sim x+y \sim v} \\
\text { dist: } & \underbrace{l(s, x)+l_{x, y}+l(y, v)} \\
\geqslant & d[x]+l_{x, y}+l(y, v) \\
& =\underbrace{}_{d^{\prime}[y]+l(y, v)} \\
& \geqslant d^{\prime}[v]+l(y, v)
\end{aligned}
$$

distance for any other path (say through $y \notin s$) ubll at least be $d^{\prime}[y]+l(y, v)$.
and if v was picked before y, then $d^{\prime}[y] \geqslant d^{\prime}[v]=d[v]$
$\Rightarrow d[v]=d^{\prime}[v]$ is in fact the shortest s to v distance.
Implementation and running the:

- On) inbtialization
- Proortýn queue: maintain d'[u] for every $u \notin s$.
- ExtratMin operation for every iteration
- Changekey $\leftarrow m$ many operatfons overall.

$$
O(n)+n \text { ExtractMin }+m \text { ChangeKey }+O(n) \text { overhead. }
$$

