Graph algortitus (Could).
Minbmum Spanning Tree.
Graph $G=(V, E)$: Spanning tree is a tree that covers all vertices.
Minimum spanning tree is the spanning tree $\omega /$ min $\omega t /$ cost.

$$
w t(T)=w_{1}+w_{2}+\cdots+w_{7} .
$$

Assumption: All edges get

$$
\operatorname{cost}(T)=\sum_{e \in T} \operatorname{cost}(e) .
$$ distinct wits.

Claim: Under this assumption, there is a unsque MST.
Say
T_{1} and T_{2} both attain min cost of c^{*}.

$E\left(T_{1}\right) \quad E\left(T_{2}\right)$ are distinct subsets of E.

Swapping arguments.
$G=(V, E)$, costs for every

- Promis edge.
- Kruskal's
- Pick edges of smallest $\omega t /$ cost iteratively and maintain tree structure.

$$
e_{1}, e_{2}, \ldots, e_{m}
$$

 wt.

- Hesafively grow the set S unit $S=V$:

Find an edge of min cost st it has one end vertex in s and the other end in VIS.

- Reverse-delete.
- Cycle property: Let C be any cycle. Let edge f be the max. wt edge in C. Then f cannot be a part of MST.
Pf: Let T^{*} be the MST s.t it contains f. $\left.T^{*}-s f\right\}$ makes it disconnected.

Choose another edge e sit $\cos t(e)<\cos t(f)$ and edge e goes across the cut.

- In $+^{*}-\{f\}, u$ and v are in distinct parts.
$\Rightarrow \exists$ an edge that goes across the cut.

$$
T=T^{*} \cup\left\{e \xi-\{f\} \Rightarrow \begin{array}{r}
\operatorname{cost}(e)<\operatorname{cost}(f) \\
\Rightarrow \cos t(T)<\operatorname{cost}\left(T^{*}\right)
\end{array}\right) . \begin{gathered}
\text { contradiction } \\
\text { to } T^{*} \text { being } \\
\\
\\
\\
\\
\\
\\
\text { MST }
\end{gathered}
$$

- Cut property: Let S be a set of vertices \uparrow Let e be the edge of min cost among the edges that have exactly one end point in S. Then MST contains e.
Pf: Assume that MST T^{*} does not contain e.
$u \in S$ and $v \notin S$.
 in G
\exists edge f st f connects
 u and v and one end point of f is in S and the other $\& S$.

By the min cost argument, $\cos t(e)<\cos t(f)$. $T=T^{*} \cup\{e \xi-f$.

$$
\left\{\begin{array}{l}
\cos t(e)<\cos t(f) \\
\Rightarrow \cos t(T)<\cos t\left(T^{*}\right)
\end{array}\right.
$$

contradiction to our
assumption.

Kruskal's algorithm:

- Add edges of min possible wt set they donot lead to cycles. \& Cycle property + considering edges in incr. order of cost + cut property.
Correctness of Kruskal's is guaranteed by both cut and cycle properties.
- Correctness of Prom's is
 guaranteed by cut property.
n Extract Min + Maintaing the tree. $\}$
\{Simblar to Dijkstra's
(u, v)

Union (cu, s)) \uparrow
Merge
Kruskal's:
n Union operations
2 m Find

