Greedy algorithms (contd.)
Average bit length $(T)=\sum_{x \in S} f_{x} \cdot \operatorname{depth}_{T}(x)$ preffixinee
$S=$ Set of letters/Alphabet.
We want to show that our algo gives an "optimal" prefix tree.
Lemma: Our aborithm gives optimal prefix tree.
Proof: By induction on $|S|$.

Base case: Trivial case. $|s|=1$
Ind tupothesis: $\forall s$, s.t $|s| \leq k-1$, algo gives optimal preffextrees. Ind. step: $|s|=k$.
\longrightarrow Algorithm generates a tree T.
Suppose T is not optimal. $\exists z$ st $A B L(z)<A B L(T)$.
\rightarrow Picks two least free. letters y and z and replaced them w/ a letter st $f_{w}=f_{y}+f_{z}$.

$$
\begin{aligned}
S \longrightarrow \text { S }^{\prime} \operatorname{set}\left|S^{\prime}\right|=k-1 . \quad & A B L(T)=\sum_{x \in S} f_{x} \cdot \operatorname{depth}(x) \\
T \longleftarrow T^{\prime} & \sum_{x \in S \backslash\{y, z\}} f_{x} \cdot \operatorname{depth}(x) \\
& +f_{y} \cdot \operatorname{depth}(y)+f_{z} \cdot \operatorname{depth}(z)
\end{aligned}
$$

$$
=\sum_{x \in S \backslash\{y, z\}} f_{x} \cdot \operatorname{dept}_{T}(x)+\operatorname{depth}(y) \cdot\left(f_{y}+f_{z}\right) .
$$

(Note that $\operatorname{depth}_{T}(x)=\operatorname{depth}_{T}(x) \quad \forall x \in S \backslash\{y, z\}$.

$$
\operatorname{depth}_{T}(z)=\operatorname{depth}_{T}(y)=\operatorname{depth}_{T^{\prime}}(w)+1 \text {. }
$$

$$
f_{w}=f_{v}+f_{z}
$$

$$
\begin{aligned}
& =\left(\sum_{x \in S^{\prime} \backslash\{w \xi}^{\downarrow} f_{x} \cdot \operatorname{depth}_{T^{\prime}}(x)\right)+f_{w} \cdot\left(\operatorname{depth}_{T^{\prime}}(w)+1\right) \\
& =\left(\sum_{x \in S^{\prime}} f_{x} \cdot \operatorname{depth}_{T^{\prime}}(x)\right)+f_{w}=A B L\left(T^{\prime}\right)+f_{w}
\end{aligned}
$$

$$
A B L(T)=A B L\left(T^{\prime}\right)+f_{\infty}
$$

Qu: Ave y and z siblings in z ?
t, Suppose not. Since z is optimal tree, y and $\}$ z occurs at same depth.
\rightarrow We can make y and z siblings without changing $A B L$. \Rightarrow We can assume WLOG that y and z are siblings in Z.

From 2 , obtain z^{\prime} sit (y) (2) is replaced by

$$
\begin{align*}
\Rightarrow & A B L(z)=A B L\left(z^{\prime}\right)+f_{w} \tag{y}\\
& \left.f_{w}+A B L\left(z^{\prime}\right)=A B L(z)<A B L L T\right)=A B L\left(T^{\prime}\right)+f_{w}
\end{align*}
$$

$$
\Rightarrow \quad A B L\left(Z^{\prime}\right)<A B L\left(T^{\prime}\right)
$$

But T^{\prime} was optimal (given by the induction hypothesis).
This cannot happen. Thatis, $A B L(Z)$ canit be less
$\Rightarrow T$ is optimal than $A B C(T)$.

Running tome:

Interval scheduling.
Premise: Processor/Resource and a set of requests/jobs.
We are given a list of intervals.
We say a subset of req are "cOmpatible" \mid sci) fri)
if no tiro requests have their intervals $\mid \underset{\text { time internal. }}{\text { if }}$
overlapping.

Goal: Find a largest set of compatible intervals in the set of reqs given.

$$
\begin{aligned}
R=\left\{I_{1}, \ldots, I_{n}\right\} ; & A \subseteq R \\
& =\left\{I_{a_{1}, \ldots,} I_{a_{k}}\right\} \text { s.t } I_{a_{i}} \cap I_{a_{j}}=\phi
\end{aligned}
$$

Qu: What is the maximum value of k ? $\quad \forall i f j \in\{4, \ldots, k\}$.

(1.) Finssh tomes-Earks are preferred.
2. Pick the next closest disjoint interval.
3. Pick the one w/ fewer incompatibilities x
4. Early start tome X
5. Shortest the intervals. x

Strategy: Pick req w/ early finbsh tomes.
Algo:
Input: R, a set of requests
$A \leftarrow \phi$.
While R is not empty:
Choose a req i w/ lowest finish tome.
$A \leftarrow A \cup\{i\}$.
Remove all reps incompatible w/ i in R, along w / i
Return A.
Correctness: A is optimal.

$$
\left\{\begin{array}{l}
\text { maximize the no. of jobs/reas } \\
\text { that are couphtible w/ each } \\
\text { other. }
\end{array}\right.
$$

Say there exists a subset $O \subseteq R$ s.t O is optimal.

$$
0=\{\underbrace{J_{1}, \ldots, J_{m}}\}
$$

$$
A=\left\{I_{1}, \cdots, I_{k}\right\}^{s(u)-f(u)}
$$

If O is optimal, $m \geqslant k$.
in sorted order
If A is notoptomal, $m>k$. of their tomes.

We wont to argue that m cannot be strictly larger thank if A was built using our algorithm.
Obs: $f\left(I_{1}\right) \leqslant f\left(J_{1}\right)$.

$$
\begin{aligned}
& 0=\left\{J_{1}, \ldots, J_{k}, \ldots J_{m}\right\} \\
& A=\left\{I_{1}, \ldots, I_{k}\right\}
\end{aligned}
$$

$\Rightarrow J_{k+1}, \cdots J_{m}$ ave compatible w/ A.

Proof by induction: On $r \in[1, \ldots, k]$
Base case: $r=1$.

1. Step: We can assume that Ind. hyp. holds for all r ' $\leqslant r-1$.

$$
\begin{aligned}
f\left(I_{r-1}\right) \leqslant f\left(J_{r-1}\right) \cdot s\left(J_{r}\right) & \geqslant f\left(J_{r-1}\right) \\
& \geqslant f\left(I_{r-1}\right)
\end{aligned}
$$

Pick the job w/ least finds Home.

$$
I_{r}
$$

$$
J_{r}
$$

Suppose $f\left(J_{r}\right)<f\left(I_{r}\right)$.
Then exchange J_{r} and I_{r} as algorithm would have actually picked I_{r}.

$$
\Rightarrow \quad f\left(I_{v}\right) \leqslant f\left(J_{r}\right)
$$

