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Abstract. One of the central themes of Algebraic Complexity Theory is to understand the relative computation
power of algebraic complexity classes VP and VNP. VP is a class of polynomial families which can be computed
efficiently by algebraic circuits. VNP is a class of polynomials which can be efficiently expressed through polynomial
families in VP, but we do not know if they can be computed efficiently. It is a long standing open problem in this
area to show that VP is a strict subset of VNP. At this juncture, it is fair to believe that newer characterization
of these complexity classes could help us understand these models better (and possibly help us is resolving this
question in restricted settings like non-commutativity at the very least).
Recently, Mengel [MFCS, 2013] showed that Algebraic Branching Programs (ABPs)1 can be extended with
memory and the computational models thus obtained can be used to characterize VP and VNP. In particular,
Mengel showed that ABPs with a single stack characterize VP, and branching programs with random-access
memory characterize VNP.
In this work we show that algebraic branching programs with just 2 stacks efficiently simulates the polynomial
families in VNP, and two stack branching programs are VNP-complete.
Further, we observe that k-stack branching programs (for all polynomially bounded k) are no more powerful
than 2-stack branching programs (upto a polynomial blowup in size).
This strengthens the work of Mengel in the following way – VBP vs. VP vs. VNP are characterized by algebraic
branching programs with 0, 1, and 2 stacks, respectively, or no-memory, a stack as memory, and a queue as
memory respectively, which hold even in the non-commutative setting.
We also refine Mengel’s characterization of VP through stack-height characterization.

1 It is well known that algebraic branching programs (ABPs) characterize the class VBP (or equivalently VPskew).



1 Introduction

Algebraic models of computation An algebraic circuit is the most commonly encountered computational model in
algebraic complexity. It is a DAG where the leaf nodes are labelled with variables or constants and the intermediate
nodes are labelled with operations such as +,×. Another important computational model is the algebraic branching
program (ABP). ABPs are source-to-sink DAGs with the edges labelled with variables or constants. The polynomial
computed by an ABP is given by sum of weights of all source-to-sink path where weight of a path is defined as
product of weight of edges in it (refer to [7], [6] for a detailed discussion on these computational models).

VP, VBP, VNP, reductions and completeness The class VP contains all polynomial families that have polynomially-
bounded degree, and are computed by a polynomial-sized circuits. Similarly, the class VBP contains those
polynomial families in VP which can also be computed by a polynomial-sized ABPs. Another important class
in algebraic complexity is VNP. It contains all polynomial families that can be expressed as a boolean sum of
a VP polynomial family. That is, (pn)n∈N ∈ VNP if pn(x̄) =

∑
ē∈{0,1}m−n qm(x̄, ē) where m ∈ poly(n) and

(gm)m∈N ∈ VP.

Definition 1 (p-projection). Let pn(x1, . . . , xn) and qm(y1, . . . ,ym) be two polynomials. Then pn is said to be a
p-projection of qn if there exists a simple map σ : {xi}i∈[n] → {yi}i∈[m] ∪ F and m ∈ poly(n) s.t. pn(x1, . . . , xn) =
qm(σ(x1), . . . ,σ(xn)).

Valiant [8] showed that polynomial families (Permn) and (HCn) are complete for VNP under p-projections.
In other words, a polynomial family is in VNP if it can be expressed as a p-projection of either Permanent or
Hamiltonian cycle familyes. Valiant further showed that a polynomial family is in VNP if it’s coefficients can be
computed in #P/poly (Valiant’s criterion). We refer the readers to [4,8,6] for finer details.

1.1 Branching programs with auxiliary memory

Let S be a stack, and Σ be its alphabet. For each letter s ∈ Σ, we can define stack operations push(s) and
pop(s). We use nop to denote no operation on the stack. A sequence of operations on the stack S is a sequence
op1,op2, . . . ,opr where (for all i ∈ [r]) either opi is of the form push(s) or pop(s), for some letter s ∈ Σ, or of
the form nop. Realizable sequences of stack operations are defined inductively.

1. Empty sequence is realizable.
2. A realizable sequence starts with an empty stack and ends with an empty stack.
3. If P is a sequence of realizable stack operations, then for all s ∈ Σ, push(s) · P · pop(s) is also a realizable

sequence. Further, nop ·P and P · nop are also realizable sequences.
4. If P and Q are two realizable sequences of stack operations, then P ·Q is also a realizable sequence of stack

operations.

Definition 2 (Definition 3.1, [5]). Let S be a stack over the alphabet Σ. A stack branching program (SBP) G is an
algebraic branching program with an additional edge labeling σ where σ : E 7→ {op(s) | op ∈ {push,pop}, s ∈ Σ} ∪
{nop}. A source-to-sink path P = e1, e2, . . . , er has the sequence of stack operations σ(P) = σ(e1),σ(e2), . . . ,σ(er).
We call P a stack realizable path if σ(P) is a stack realizable sequence. Polynomial f(x1, . . . , xn) thus computed is
given by the sum of weights of all stack realizable source-to-sink paths.

f(x1, . . . , xn) =
∑

P:P∈s⇝t stack realizable paths

wt(P).

Using this model of computation, Mengel proved the following theorem.

2



Theorem 1 (Theorem 3.3, [5]). A polynomial family {fn}n∈N is in VP if and only if a family of polynomial-sized
stack branching programs computes it.

We make this theorem of [5] a bit more precise by adapting the proof of depth reduction of [10] and show the
following.

Theorem 2. A polynomial family {fn}n∈N is in VP if and only if a family of polynomial-sized stack branching
programs of stack-height at most O(log2 n) computes it.

This additional characterization (along with Lemma 2) gives us an alternative proof to the fact that polynomial
families in VP can be simulated by quasi-polynomial sized algebraic branching programs.

k-stack branching programs In this work we also introduce k-stack branching programs, a generalization of
stack branching programs obtained by allowing the number of stacks to be a parameter.

Definition 3. Let S1, . . . ,Sk be k many stacks over the alphabet Σ. A k-stack branching program G is an algebraic
branching program with an additional edge labeling σ where

σ : E 7→ {(op1, . . . ,opk) | ∀ j ∈ [k],opj ∈ {pushj(sj),popj(s
′
j),nop} for sj, s ′j ∈ Σ}

and, for each j ∈ [k], pushj and popj are push and pop operations on stack Sj, respectively. For each i ∈ [k], let
πi be the projection of a k-tuple to its ith element. A source-to-sink path P = e1e2 . . . er has the sequence of stack
operations σ(P) = σ(e1),σ(e2), . . . ,σ(er). For each i ∈ [k], let σi(P) = πi(σ(e1)),πi(σ(e2)), . . . ,πi(σ(er)).

P is a k-stack realizable path if for each i ∈ [k], σi(P) is a stack realizable sequence. Polynomial f(x1, . . . , xn)
thus computed is given by the sum of weights of all k-stack-realizable s⇝ t paths.

f(x1, . . . , xn) =
∑

π:π∈s⇝t k-stack-realizable paths

wt(π).

Using this definition, we prove that k-stack branching programs are VNP-complete for 2 ⩽ k ⩽ poly(n).

Theorem 3. Let n, k be natural numbers such that n is large, and 2 ⩽ k ⩽ poly(n). A polynomial family {fn}n∈N ∈
VNP if and only it can be computed by a family of polynomial-sized k-stack branching programs.

A generic approach to prove Theorem 3 is the following.

1. Show that Hamiltonian cycle polynomial family (or Permanent polynomial family resp.) can be computed
by polynomial-sized 2-stack branching programs. This can be done via gadget constructions (see Lemma 4
(Lemma 3 resp.)). That is, for all n ∈ N, there is a polynomial-sized 2-stack branching program that computes
HCn (Permn resp.), and

2. Show that for any natural number k that is polynomially-bounded, families of polynomials computed by
k-stack branching programs are in VNP (see Lemma 1).

However for the sake of this article, we would like to replace the approach in Item 1 with the following (more)
insightful theorem.

Theorem 4. Given a k-stack branching program (k ⩾ 1) of size s computing the polynomial qn(x1, . . . , xn), there
exists a (k+ 1)-stack branching program of size poly(s,n) computing

pn(x1, . . . , xn) =
∑

(e1,...,em)∈{0,1}m

qn+m(x1, . . . , xn, e1, . . . , em). (m ∈ poly(n))
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We also provide efficient constructions of 2-stack branching program computing the Permn and HCn polyno-
mials (see Appendix A and Appendix B).

By putting Lemma 1, Lemma 4 and Theorem 4 together, we also get alternate proofs for the following
well-known statements.

1. Families of polynomials that are obtained through Exponential sum of families of polynomials from either VBP
or VP, are in VNP, and

2. VNP is closed under exponential summation (cf. [2, Theorem 2.19]).

2 Improved Characterization of VP

It was shown by Mengel [5] that a polynomial pn computed by a multiplicatively disjoint circuit (see [4] for a
detailed discussion on multiplicatively disjoint circuits) of size s can also be computed by a stack branching program
of size poly(s) and any polynomial pn computed by a stack branching program of size s′ can also be computed by
a circuit of size poly(s′). These two statements combined gives us a characterization of VP i.e., a polynomial family
(pn)n∈N is in VP if and only if there exists a poly(n)-sized stack branching program computing it. In this section,
we improve upon this characterization by showing that any degree d polynomial computed by a circuit of size s
can also be computed by a stack branching program of size poly(n, s,d) and stack height O(log(s) log(d)). Setting
s,d ∈ poly(n), we get that any polynomial family (pn)n∈N is in VP if and only if there exists a poly(n)-sized stack
branching program computing it and the stack height of such a stack branching program is bound by O(log2(n)).
This can be seen as a stack height reduction result for stack branching program analogous to the depth reduction
result for circuits shown in [10].

Before we describe the technical details, we first borrow some notation from [10]. For a gate w in a given circuit
C, we use f(w) to denote the polynomial computed at w, and d(w) to denote degree of polynomial computed at
w. Further, we have the following.

Definition 4. Let C be a circuit and v, w are gates in the circuit. f(v), f(w) denote the polynomial computed at gates
v, w respectively and d(v), d(w) denote the degree of the polynomial computed at gates v, w respectively. Then, the
function f(v;w) is defined as shown below and d(f(v;w)) = d(w) − d(v).

f(v;w) =


1 if v = w,

0 if v ̸= w and f(w) ∈ F ∪ {xi}
n
i=1 i.e., w is a leaf node,

f(v;w′) + f(v;w′′) if w = w′ +w′′,

f(w′′)f(v;w′) if w = w′ ×w′′ s.t. d(w′′) ⩽ d(w′).

Definition 5 (Frontier gates). Let C be a circuit computing an arbitrary polynomial. For any value of a, the set Va

is defined as follows.
Va = {t| t is a gate in C, d(t) > a, t = t′ × t′′, d(t′) ⩽ a}. (1)

Theorem 5. Let Pn be a degree d polynomial computed by a circuit C of size |C|. Then, there exists a poly(|C|)-sized
stack branching program with stack height O(log |C| logd) computing Pn.

Proof. We will now adapt and build on the proof of [5, proposition 3.6] and thus we recommend the readers to
look at it. Further, the idea is to show the following.

1. Every gate w in C has a corresponding pair of vertices {sw, tw} in a relaxed stack branch-
ing program (see [5] for a detailed discussion on relaxed stack branching program) s.t.∑

wt(realizable sw to tw walks of length mw ) = f(w), mw = O(d(w)2) and stack height at most
O(log(d(w))), and
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2. Every pair of gates v, w s.t. f(v;w) is non-zero, there exists a pair of vertices {svw, tvw} in the relaxed stack
branching program s.t.

∑
wt(length mvw realizable svw to tvw walks ) = f(v;w), mvw = O(d(f(v;w)2))

and stack height O(log(d(f(v;w)))).

The above statements are proven by induction on the degree of the polynomial computed at each gate. At any
stage i, we consider all gates w and pairs of gates v, w s.t. d(w),d(f(v;w)) ∈ (2i−1, 2i].

Base case Consider the gate w individually and then the pair of gates v, w s.t. d(w) and d(f(v;w)) is 1. Clearly,
f(w) and f(v;w) compute variables or constants or linear forms. Edges with weights as variables and constants
can be added to the relaxed stack branching program. Any linear form

∑n
j=1 cjxj can be computed as shown in

Figure 1. Note that the stack alphabet used here will be {⟨w, i⟩ | ∀w ∈ C, i ∈ [n]} ∪ {⟨w, v, i⟩ | ∀v,w ∈ C, i ∈
[n]} ∪ {uk, vk,uk′ , vk′ | uk, vk,uk′ , vk′ ∈ C} and the stack symbols used in Figure 1 will change to ⟨w, v, i⟩ if the
linear form is computed by f(v;w).

...

...

...

...

...

...

pu
sh
(⟨w

, 1
⟩)

pus
h(⟨w

, 2⟩)

push(⟨w,n⟩)

c1

c2

cn

x1

x2

xn

pop(⟨w, 1⟩)
pop(⟨w, 2⟩)

po
p(⟨
w

,n
⟩)

Fig. 1: Gadget computing linear form

Clearly, the stack height is ⩽ 1 and path length ⩽ 1 + 3(0+1) ⩽ 4.

Inductive hypothesis

1. Consider all gates w s.t. d(w) ∈ (2i−1, 2i]. Assume that there exists pairs of vertices {sw, tw} in the polynomial-
sized relaxed stack branching program s.t.

∑
wt(length mw realizable sw to tw walks ) = f(w) satisfying

mw ⩽ d(w) + 3(i+1) and stack height is O(i).
2. Consider all pairs of gates v, w s.t. f(v;w) is non-zero and d(f(v;w)) ∈ (2i−1, 2i]. Assume that

there exists pairs of vertices {svw, tvw} in the polynomial-sized relaxed stack branching program s.t.∑
wt(length mvw realizable svw to tvw walks ) is equal to f(v;w) satisfying mvw ⩽ d(f(v;w)) + 3(i+1)

and stack height is O(i).

Increment step

1. Consider all gates w s.t. d(w) ∈ (2i, 2i+1]. Due to [10], we write f(w) =
∑

t∈Va
f(t′)f(t′′)f(t;w) s.t. d(t′),

d(t′′), d(f(t;w)) ∈ (2i−1, 2i] and a = 2i. Due to the inductive assumption, we get that a relaxed stack
branching program exists with pairs of vertices {st′ , tt′ }, {st′′ , tt′′ } and {stw, ttw} computing each f(t′), f(t′′)
and f(t;w) respectively.
Next, recall from [5, Proposition 3.6] that we can construct a relaxed stack branching program with source
and sink vertices sw, tw computing f(w). For each product term we add 3 vertices, for addition we add 2
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vertices and at most mw vertices to make the walk lengths equal. Trivially, Va ⩽ |C| and number of gates w is
also bounded by |C|. Therefore, the total number of vertices added can be at most (3|C|+mw + 2)|C|. Since,
we push one stack alphabet for addition and one for multiplication, the overall stack height increases by 2.
We know that d(t) = d(t′) + d(t′′), d(f(t;w)) = d(w) − d(t) and due to the inductive assumption, we get
mt′ ⩽ d(t′) + 3(i+1), mt′′ ⩽ d(t′′) + 3(i+1) and mtw ⩽ d(f(t;w)) + 3(i+1).

mw ⩽ max
t

{mt′ +mt′′ +mtw} (2)

⩽ max
t

{d(t′) + d(t′′) + d(f(t;w)) + 3(i+2)} (3)

⩽ max
t

{d(t) + d(w) − d(t) + 3(i+2)} (4)

⩽ max
t

{d(w) + 3(i+2)} (5)

⩽ d(w) + 3(i+2). (6)

2. Consider all pairs of gates v,w s.t. d(f(v;w)) ∈ (2i, 2i+1]. Due to [10], we write f(v;w) =∑
t∈Va

f(t′′)f(v; t′)f(t;w) s.t. d(t′′), d(f(v; t′)), d(f(t;w)) ⩽ (2i−1, 2i] and a = 2i + d(v). Due to the
inductive assumption, we get that a relaxed stack branching program exists with pairs of vertices {st′′ , tt′′ },
{svt′ , tvt′ } and {stw, ttw} computing f(t′′), f(v; t′) and f(t;w) respectively.
Once again, by following the steps in [5, Proposition 3.6], we construct a relaxed stack branching program
with source and sink vertices svw, tvw computing f(v;w). Since, we look at pairs of gates, the total number of
vertices added can be at most (3|C|+mvw + 2)|C|2. Similar to the previous case, we push one stack alphabet
for addition and one for multiplication. This causes the overall stack height to increase by 2.
We know that d(f(v; t′)) = d(t′) − d(v), d(f(t;w)) = d(w) − d(t) and due to the inductive assumption, we
get mt′′ ⩽ d(t′′) + 3(i+1), mvt′ ⩽ d(f(v; t′)) + 3(i+1) and mtw ⩽ d(f(t;w)) + 3(i+1).

mvw ⩽ max
t

{mt′′ +mvt′ +mtw} (7)

⩽ max
t

{d(t′′) + d(t′) − d(v) + d(w) − d(t) + 3(i+2)} (8)

⩽ max
t

{d(w) − d(v) + 3(i+2)} (9)

⩽ d(f(v;w)) + 3(i+2). (10)

The maximum walk length becomes d+ 3⌈log(d)⌉+1 ∈ O(d2). Now, we can convert the relaxed stack branching
program to a normal stack branching program as shown in [5, lemma 3.5] and the size of the stack branching
program remain polynomial.

The overall stack height is atmost 2 log(d). However, every alphabet in the stack is from the set {⟨w, i⟩ | ∀w ∈
C, i ∈ [n]}∪ {⟨w, v, i⟩ | ∀v,w ∈ C, i ∈ [n]}∪ {uk, vk,uk′ , vk′ | uk, vk,uk′ , vk′ ∈ C}. Converting the stack alphabets
to binary, the overall stack height becomes O((log |C|)(logd)).

⊓⊔

3 Computational power of k-stack branching programs

In this section, we first provide a proof for Theorem 4 and through this, we explore the computational power of
k-stack branching programs.

Proof of Theorem 4. In the figures below (and henceforth in this document), for the sake brevity, edge weights,
and stack operations on edges are only mentioned when they are different from 1, and when they are different
from nop respectively. The default edge weight is 1, and the default operation is nop.
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Let GQ be the k-stack branching program that computes the polynomial Qn+m(x1, . . . , xn,y1, . . . ,ym), and
|GQ| = poly(n).

Let the graph gadgets Gpush(0,1), Gpop(0,1), Ginit and Greset be constructed as shown in Figures 2a, 2b, 3 and 4
respectively.

pushk+1(0)

pushk+1(1)

(a) Gadget Gpush(0,1)

popk+1(0)

popk+1(1)

(b) Gadget Gpop(0,1)

Fig. 2: Gadget Gpush(0,1) and Gpop(0,1)

Gpush(0,1) Gpush(0,1) . . . Gpush(0,1)

m copies

Fig. 3: Gadget Ginit

Gpop(0,1) Gpop(0,1) . . . Gpop(0,1)

m copies

Fig. 4: Gadget Greset

Let the helper gadgets Gk+1→1, G1→k+1, G(i) and G ′
(i) be as described in Figures 5a, 5b, 6 and 7. Note that

these gadgets make use of the (k+ 1)th stack.

Any edge in GQ with edge label yi (∀ i ∈ [m]) is now replaced by a corresponding graph gadget Hi (shown in
Figure 8).

We now construct a (k+ 1)-stack branching program GP by putting together Ginit, modified GQ and Greset
as shown in Figure 9.

Note that each source to sink path in the gadget Ginit fills m many {0, 1} values into the (k+ 1)th stack. We
now associate ith entry of this stack with the assignment of the variable yi. The top of the stack corresponds to
the assignment for y1 and the bottom most element, to ym. Thus, a path from source to sink in Ginit fixes the
variables y1, . . . ,ym.
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po
p k

+
1
(0
)

pop
k+

1 (1)

push
1 (0)

pu
sh 1

(1
)

(a) Gadget Gk+1→1

po
p 1
(0
)

pop
1 (1)

push
k+

1 (0)

pu
sh k

+
1
(1
)

(b) Gadget G1→k+1

Fig. 5: Gadgets Gk+1→1 and G1→k+1

Gk+1→1 Gk+1→1 . . . Gk+1→1

i− 1 copies

Fig. 6: Gadget G(i)

G1→k+1 G1→k+1 . . . G1→k+1

i− 1 copies

Fig. 7: Gadget G′
(i)

7−→ G(i) G′
(i)

yi

popk+
1
(0)

pop
k+1 (1)

0

1

push
k+1 (0)

pus
hk+

1
(1)

Fig. 8: Gadget Hi (for each i ∈ [m])

Ginit GQ Greset

Fig. 9: (k+ 1)-stack branching program GP

To access the assignment for a variable yi, we need to access the ith element from the top, in the (k + 1)th
stack. Towards that we use the helper gadgets G(i) and G ′

(i). G(i) moves the i − 1 elements at the top of the

(k+ 1)th stack to the first stack. Next, if a 0 is popped, then we add an edge with weight 0. If a 1 is popped, an
edge with weight 1 is added. Finally, G ′

(i) moves back all the elements moved by G(i) to (k+ 1)th stack.

It is easy to see that in any source to sink path of GP, its subsection corresponding to Ginit determines the
path taken in each instance of graph gadgets Hi (i ∈ [m]).
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Putting it all together, we get that GP computes the polynomial P(x1, . . . , xn).

P(x1, . . . , xn) =
∑

(e1,...,em)∈{0,1}m

Q(x1, . . . , xn, e1, . . . , em)

=
∑

e=(e1,...,em)∈{0,1}m

 ∑
π:π∈s⇝t k-stack-realizable paths in GQ

wt(π|e)


=

∑
π:π∈s⇝t k-stack-realizable paths in GQ

 ∑
e=(e1,...,em)∈{0,1}m

wt(π|e)


=

∑
π′:π′∈s⇝t (k+ 1)-stack-realizable paths in GP

wt(π ′) .

In the above math block, the last equality follows from the fact that each k-stack realizable path is associated with
each of the 2m many paths of Ginit which in turn correspond to the assignment y← e, and wt(π|e) corresponds
to the weight of the path π after substituting for y1, . . . ,ym by e1, . . . , em. ⊓⊔

Corollary 1. Every polynomial family in VNP is computed by a polynomial-sized 2-stack branching programs.

Proof. By definition, we know that every polynomial family (pn)n∈N in VNP can be expressed as∑
ē∈{0,1}m−n gm(x̄, ē) where the polynomial family (gm)m∈N is in VP and m = poly(n). Due to Theorem 5,

we know that every polynomial family in VP has an efficient stack branching program computing it. Combining it
with the above theorem, we see that every polynomial family in VNP has a 2-stack branching program computing
it. ⊓⊔

The above corollary tells us that every polynomial family in VNP can be computed efficiently by 2-stack
branching programs. However, is every polynomial family computed by a 2-stack branching program inside VNP?
We give an affirmative answer to this question using the following lemma. In fact, the lemma proves a much
stronger result. We prove that statement for k-stack branching program for every k ∈ [1, poly(n)].

Lemma 1. Let (pn)n∈N be a polynomial family such that for each n, pn is computed by a polynomial-sized k-stack
branching program where 0 ⩽ k ⩽ poly(n). Then (pn)n∈N is in VNP.

Proof. Note that each k-stack realizable, source-to-sink path computes a monomial. Multiple such paths may
compute the same monomial and together they would contribute to the coefficient of the monomial. Given a
monomial, we can compute all the 2-stack realizable paths contributing to this in #P/ poly – over a sequence of
all non-deterministic choices at each node to go from the source to sink, we can accumulate the edge weights
(including the stack operations) of all the edges along the traversal and check if – the product of weights of edges
equals the given monomial, and if the sequence of stack operations are 2-stack realizable. Putting this together
with Valiant’s criterion completes the proof. ⊓⊔

Combining Theorem 4 with Lemma 1, we get the promised characterization 2-stack branching program of
VNP. However, notice that we have proven Theorem 4 and Lemma 1 for an arbitrary k. Consider the following
scenario, a polynomial pn, in VNP, is computed by a 2-stack branching program and the boolean sum of pn is
computed by a 3-stack branching program (given by Theorem 4). However, Lemma 1 tells us that any polynomial
computed by 3-stack branching program is also inside VNP. Therefore, we have also given a stack branching
program based proof showing the closure of VNP under boolean sum (this was originally proven by Valiant [9,
Theorem 5]). Another detail to note from the proof of Theorem 4 is that it can be modified slightly and used when
pn is computed by an ABP instead. To be more precise, using the proof of Theorem 4 with 2 additional stacks
instead of 1, we see that if a polynomial is computed by a size s ABP, then its boolean sum is computed by 2-stack
branching program i.e., the boolean sum of any polynomial computed by an efficient ABP lies inside VNP. This
gives an alternate proof for boolean sum of polynomial families in VBP lying inside VNP (originally obtained as a
consequence of [9, proposition 1] and [9, proposition 2]).
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4 Relevance of Stack Height

Mengel proves that any 1-stack branching program with a larger alphabet size (|Σ| > 2) can be simulated by
a 1-stack branching program (over binary alphabet) with poly-logarithmic blow-up in length and polynomial
blow-up in size. Thus, it is sufficient to work with binary alphabet. This observation further implies that stack
branching programs with constant-sized alphabet, logarithmic stack-height, and of size s can be simulated by
algebraic branching programs of size poly(s). We extend this line of thought and state the following.

Lemma 2. Let P(x1, . . . , xn) be a polynomial computed by a k-stack branching program (over binary alphabet)
of size s, and stack-height at most H (for every stack). Then P(x1, . . . , xn) can also be computed by an algebraic
branching program of size at most O(2k(H+1) · s).

Proof. Let G be the k-stack branching program. Let V and E be the vertex and edge sets of G. Let S be the set of
all possible heights of stack configurations.

S = {(h1, . . . ,hk) | ∀ i ∈ [k], 0 ⩽ hi ⩽ H} .

For a stack-height vector (h1, . . . ,hk) in S , there are
∏k

i=1 2hi many different stack configurations. In total, there
are at most ∑

0⩽h1,...,hk⩽H

(
k∏

i=1

2hi

)
⩽

 H∑
j=0

2j

k

⩽ 2(H+1)k .

Let V ′ and E ′ be initialized to empty sets. Let us use t to denote the quantity 2(H+1)k. For each vertex v ∈ V , we
make t many copies of this vertex and add them to set V ′. vC be the copy of v that corresponds to the configuration
C of k-stacks. For each edge e = (u, v) ∈ E with weight wt(e) and the associated stack operations (op1, . . . ,opk),
we add an edge between uC1 and vC2 (with edge weight wt(e)), for all stack configurations C1 and C2 such that
C2 is obtained from C1 through the stack operations (op1, . . . ,opk). Let G ′ be the algebraic branching program
obtained at the end of the above process with V ′ and E ′ as its vertex and edge sets.

It is now straightforward to form a bijection between realizable source-to-sink paths in the G and source-to-sink
paths in G ′. ⊓⊔

Observe that we can trade-off H for k and vice versa and get the following statements. The set of families
of polynomials computed by polynomial-sized k-stack branching programs with k = O(1) and H logarithmic, is
equivalent to VBP.

5 Discussion

5.1 What about VF

In this paper we mainly talk about branching programs with memory and their characterizations of VP and VNP
in general and non-commutative settings. So far we did not make any observations about the formulas. Ben-Or
and Cleve [1] showed that algebraic formulas are computationally equivalent to width-3 branching programs.
Mengel [5, Lemma 3.9] showed that any polynomial family computed by polynomial-sized algebraic circuits
can be computed with a family of width-2 stack branching programs over the binary alphabet. By analysing [5,
Lemma 3.9] carefully, we can get that any polynomial family that is computed by polynomial-sized algebraic
branching programs can also be computed by polynomial-sized width-2 stack branching programs over the binary
alphabet, with stack-height at most logarithmic. In other words, adding a logarithmically height-bounded stack to
a constant-width algebraic branching program adds computational power (assuming VF ̸= VBP) and this is in
contrast to the fact that general 1-stack branching programs with logarithmic stack-height are computationally
equivalent to algebraic branching programs.
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5.2 Future directions

– In this work, we showed that boolean summation of a polynomial can be computed using exactly one additional
stack Theorem 4. To be precise, given a k-stack branching program that efficiently computes polynomial q(x̄),
we can construct a (k+1)-stack branching program that computes the polynomial p =

∑
e∈{0,1}|x| q(x̄, ē). The

next step would be to perform the reverse. Given a k-stack branching program computing the polynomial p(x̄)
and the guarantee that polynomial p is of the form p =

∑
e∈{0,1}|x| q(x̄, ē), can we construct a (k− 1)-stack

branching program or k-stack branching program that computes q(x̄)?
– Due to [5], we know that VP is characterized by stack branching programs. Does this hold in the monotone

setting as well? We answer this for mVNP and 2-stack branching programs by showing that the permanent
polynomial family, which is known to be not in mVNP, can be computed efficiently by a monotone 2-stack
branching program Lemma 3.

– Are k-stack branching programs strictly more powerful than monotone k-stack branching programs? In all the
well known computational models, the only way to perform cancellations is via negation. However, k-stack
branching programs have an alternate way of performing negations (by making the corresponding paths
non-realizable). Therefore, it is not immediately clear if negations grant any additional computational power.
This is not known even with the restriction of k = 1.

– Since monotone 2-stack branching programs are able to compute polynomial families that are outside mVNP,
it would be interesting to figure out the exact computational power of monotone 2-stack branching programs.
Do they characterize any of the known classes beyond monotone VNP (see [3] for details on classes beyond
mVNP).

– Can we use the tools from weighted pushdown automata theory to answer the VP vs VNP question in the
non-commutative setting.
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A 2-Stack Branching Program Computing Permanent Polynomial

Lemma 3. For all n ∈ N, there exists a O(n3)-sized 2-stack branching program that computes Permn.

Proof. We shall prove the statement of the theorem by constructing a 2-stack branching program for the permanent
polynomial. Let S1, S2 denote the two stacks and the stack alphabet is given by T = {⟨b, i⟩ | b ∈ {0, 1}, i ∈ [n]}.
Permn is defined over variables {xij | i ∈ [n], j ∈ [n]}.

Before we present the construction, let us try to see how to compute a single monomial, that corresponds to a
permutation, using the two stacks and the stack alphabet. We start by having only the alphabets {⟨0, i⟩ | i ∈ [n]} in
S1 and S2 being empty. When a variable xi is multiplied to the monomial, we remove ⟨0, i⟩ from S1 and replace
it with ⟨1, i⟩. Notice that ⟨0, i⟩ is never added back to S1 again. Therefore, if xi is multiplied to the monomial a
second time, we try to remove ⟨0, i⟩ from the stack and encounter a fault. After n such multiplications to 1, we
end up with a monomial corresponding to a permutation. An important detail is that most times, ⟨0, i⟩ may not be
at the top of S1. This is where we make use of the second stack. We pop elements from S1 and push them into S2

until the required element is at the top and when the operation is done, we pop all the elements from S2 and push
them back into S1.

To generalize this technique to compute Permn over variables {xij | i, j ∈ [n]}, we first observe that directly
using the above technique with the stack alphabets {⟨0, j⟩ | j ∈ [n]} already ensures that each monomial contains
exactly one variable from each column. If the construction ensures that the first variable is from the first row,
second variable is from the second row and so on, then the monomial computed will be a monomial in Permn.

The construction is given below. We start with gadgets G′ (Figure 10) and G′′ (Figure 11). These gadgets are
used to push the stack alphabets {⟨0, j⟩ | j ∈ [n]} into S1 and pop the stack alphabets {⟨1, j⟩ | j ∈ [n]} from S1.

. . .
push1(⟨0,n⟩) push1(⟨0,n− 1⟩) push1(⟨0, 1⟩)

Fig. 10: Gadget G′

. . .
pop1(⟨1, 1⟩) pop1(⟨1, 2⟩) pop1(⟨1,n⟩)

Fig. 11: Gadget G′′

The gadget Gpop(i) (Figure 13), constructed by connecting gadgets G(1), G(2), . . ., G(i−1) in series, is used to
move the top i− 1 elements from S1 to S2 and bringing ⟨b, i⟩ (b ∈ {0, 1}) to the top of S1. The gadget Gpush(i)
(Figure 15), constructed by connecting gadgets G(i−1), G(i−2), . . ., G(1) in series, is used to move the elements
from S2 back to S1.

For each i ∈ [n], let the source-to-sink graph Gmap(i) be constructed as shown in Figure 16. That is, the source
and sink vertices of Gmap(i) are connected by n disjoint paths such that jth such path (for all 1 ⩽ j ⩽ n) is obtained
by connecting source, graph gadget Gpop(j), a single vertex (say vmap(i),j) and graph gadget Gpush(j) in series such
that all new edges except for the edge between Gpop(j) and vmap(i),j , and the edge between vmap(i),j and Gpush(j)
have weight 1 and no associated stack operations. The edge between Gpop(j) and vmap(i),j has weight xi,j and
the associated stack operation pop1(⟨0, j⟩), and the edge between vmap(i),j and Gpush(j) has weight 1 and the
associated stack operation push1(⟨1, j⟩). An important detail to note is that the construction of Gmap(i) ensures
that only variables from the ith row get multiplied to the monomial.
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pop1
(⟨0, j⟩)

pop
1 (⟨1, j⟩)

push
2 (⟨0, j⟩)

push2
(⟨1, j⟩)

Fig. 12: Gadget G(j)

G(1) G(2) G(3) . . . G(i−2) G(i−1)

Fig. 13: Gadget Gpop(i)

pop2
(⟨0, j⟩)

pop
2 (⟨1, j⟩)

push
1 (⟨0, j⟩)

push1
(⟨1, j⟩)

Fig. 14: Gadget G′
(j)

G′
(i−1) G′

(i−2) G′
(i−3) . . . G′

(2) G′
(1)

Fig. 15: Gadget Gpush(i)

Gpop(3)

Gpop(2)

Gpop(1)

...

Gpop(n)

...

Gpush(3)

Gpush(2)

Gpush(1)

...

Gpush(n)

pop1(⟨0, 1⟩)
xi,1

pop1(⟨0, 2⟩)
xi,2

pop1(⟨0, 3⟩)
xi,3

pop1(⟨0,n⟩)
xi,n

push1(⟨1, 1⟩)

push1(⟨1, 2⟩)

push1(⟨1, 3⟩)

push1(⟨1,n⟩)

Fig. 16: Gadget Gmap(i)

We now get the 2-stack branching program G for the permanent polynomial Permn (that remains to be proved)
by placing the graph gadgets G′, Gmap(1), . . ., Gmap(n), G′′ in series (with connecting edges of weight 1 and no
associated stack operations) as shown in Figure 17.
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G′ Gmap(1) Gmap(2) . . . Gmap(n) G′′

Fig. 17: Gadget connections to obtain a 2-stack branching program G

Given the construction of the 2-stack branching program G given above, we now need to show that the
polynomial computed by G is, in fact, the permanent polynomial. Towards that we shall show that there is a
bijection between the 2-stack realizable paths in G and monomials corresponding to permutations, and thus the
sum of weights of 2-stack realizable paths in G is the permanent polynomial Permn.

Every 2-stack realizable path P maps to a unique permutation πP: For every i ∈ [n], the weight of jth

source-to-sink path in the graph gadget Gmap(i) is xi,j, that is, this path maps i to j (let us call this path Pi,j). Thus
from the construction described above, source-to-sink paths in G have weights of the following form.

n∏
i=1

xi,ji where ji ∈ [n] for all i ∈ [n].

Note that not every source-to-sink path in G is 2-stack realizable. We will now argue that for any 2-stack realizable
path P, it cannot happen that there exist i < i ′ ∈ [n], such that weights of path P restricted to Gmap(i) and Gmap(i′)
be equal to xi,k and xi′,k respectively. For the sake of contradiction, let us suppose that such an event occurs.

Let us first focus our attention on sub-paths Pi and Pi′ obtained by restricting path P to Gmap(i) and Gmap(i′)
respectively.

Gpop(k) Gpush(k)
pop1(⟨0,k⟩)

xi,k

push1(⟨1,k⟩)

Fig. 18: Path Pi where i maps to k in Gmap(i)

Gpop(k) Gpush(k)
pop1(⟨0,k⟩)

xi′,k

push1(⟨1,k⟩)

Fig. 19: Path Pi′ where i ′ maps to k in Gmap(i′)

Note that the operations pop1(⟨0,k⟩),push1(⟨1,k⟩) in Gmap(i) precede the operations
pop1(⟨0,k⟩),push1(⟨1,k⟩) in Gmap(i′), in the sequence of stack operations associated with path P. As i
is getting mapped to k in Gmap(i), ⟨0, k⟩ is popped from the first stack and ⟨1, k⟩ is pushed into it (along with
other operations, cf. Figure 12 and Figure 13). Hereafter, the symbol ⟨0, k⟩ no longer exists inside the first stack.
Therefore for the operation ⟨0, k⟩ in Pi′ , the stack throws a fault and thus such a sequence of stack operations
is not 2-stack realizable. Hence, through Gmap(1) till Gmap(n) each of the n elements are mapped to distinct n
elements in [n] and this is a permutation.

Assume for the sake of contradiction that two different 2-stack realizable paths map to the same permutation.
Let Gmap(i) be the graph gadget where the paths diverge. Let one path take the jth edge and the other path take
the j′th edge as shown in Figure 20.

One path clearly gives the monomial with the variable xi,j in it, and the other gives the monomial with the
variable xi,j′ . Therefore, they do not output the same permutations. By compiling all the discussion above, we get
that each 2-stack realizable path gets mapped to a unique permutation.
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Gpop(j)

Gpop(j′)

Gpush(j)

Gpush(j′)

pop1(⟨0, j⟩)
xi,j

pop1(⟨0, j′⟩)
xi,j′

push1(⟨1, j⟩)

push1(⟨1, j′⟩)

Fig. 20: Alternate paths

For every permutation, there exists a unique 2-stack realizable path: Let π : [n] 7→ [n] be an arbitrary
permutation. That is, for all i ∈ [n], π(i) denotes the value i gets mapped to. First, we will identify a source-to-sink
path that generates the monomial corresponding to π. Towards that, in each gadget Gmap(i) (for all i ∈ [n]), choose
the π(i)th source-to-sink path within the gadget (let us call this Pi,π, which itself is a path graph). Now the path
G′, P1,π, P2,π, . . ., Pn,π, G′′ gives us a source-to-sink path of G (let us call this Pπ) and the product of weights of
its edges gives us the monomial

∏
i∈[n] xi,π(i) . This follows from the fact that the weights of source-to-sink paths

in graph gadgets G′ and G′′ is 1, and each path Pi,π has a weight of xi,π(i). By careful observation, we can infer
that Pπ is 2-stack realizable.

Now for the sake of contradiction, assume there are two different permutations π and π′ that get mapped to
the same 2-stack realizable path. ∏

i∈[n]

xi,π(i) ̸=
∏
i∈[n]

xi,π′(n).

Let j be the first index at which π and π ′ are distinct, i.e., ∀1 ⩽ i < j ⩽ n, xiπ(i) = xiπ′(i) and xjπ(j) ̸= xjπ′(j).
According to our construction, in the gadget Gmap(j), we need to select the π(j)th path to get xj,π(j) and π′(j)th

path to get the variable xj,π′(j). But each source-to-sink path in G picks precisely one of the n possible paths in
each gadget Gmap(i) (for all i ∈ [n]). By putting together all the aforementioned discussion, we get that every
permutation maps to a unique 2-stack realizable path.

⊓⊔

B 2-stack Branching Program Computing Hamiltonian Cycle Polynomial

Definition 6 (Hamiltonian cycle polynomial). Let X = {xi,j | 1 ⩽ i, j ⩽ n}. For all n ∈ N, HCn(X) is defined as
follows.

HCn(X) =
∑

σ is a cyclic permutation in Sn

n∏
i=1

xi,σ(i) .

Lemma 4. For all n ∈ N, Hamiltonian cycle polynomial HCn(X) can be computed by a O(n3)-sized 2-stack branching
program.

Proof. Let S1 and S2 denote the two stacks. Let the stack alphabet be {⟨b, i⟩ | b ∈ {0, 1}, i ∈ [n]} ∪ {⟨i⟩ | i ∈ [n]}.
For each stack Su (for u ∈ {1, 2}), let the push and pop operations be denoted by pushu(s) and popu(s) for some
letter s ∈ Σ. As before, nop denotes no operation on the stacks.

The idea behind the construction is the following. We start with {⟨0, i⟩ | i ∈ [n]} in S1 and S2 being empty. A
hamiltonian cycle of a graph with n vertices is n edges forming a cycle i.e., each variable xij represents the edge
from vertex i to j. When the edge corresponding to xij is traversed, we mark the edge j as visited by replacing
⟨0, j⟩ with ⟨1, j⟩ in S1. Next we push the alphabet ⟨j⟩ onto S1. This is done to ensure that the next edge chosen will

15



be of the form xjj′ . After n such steps, we pop {⟨1, i⟩ | i ∈ [n]} from S1. This ensures that every vertex was visited
once and since only n vertices were visited, each vertex was visited exactly once. The role of S2 is the following.
When ⟨0, j⟩ is replaced with ⟨1, j⟩ in S1, all the elements above ⟨0, j⟩ are first popped from S1 and pushed into S2.
Once the replacement is done, the elements are popped from S2 and pushed back into S1.

Let G′ and G′′ be directed path graphs as shown in Figures 21 and 22 respectively. Every edge has weight 1 in
both of these graphs.

. . .
push1(⟨0,n⟩) push1(⟨0,n− 1⟩) push1(⟨0, 1⟩)

Fig. 21: Gadget G′

. . .
pop1(⟨1, 1⟩) pop1(⟨1, 2⟩) pop1(⟨1,n⟩)

Fig. 22: Gadget G′′

For each j ∈ [n], let the source-to-sink graph G(j) be as shown in Figure 23. Every edge has weight 1 in this
graph.

pop1
(⟨0, j⟩)

pop
1 (⟨1, j⟩)

push
2 (⟨0, j⟩)

push2
(⟨1, j⟩)

Fig. 23: Gadget G(j)

For each i ∈ [n], let the source-to-sink graph Gpop(i) be constructed by placing the graphs G(1), G(2), . . .,
G(i−1) in series (see Figure 24). That is, for all 1 ⩽ j ⩽ i− 2, the sink of G(j) is connected to the source of G(j+1)

(with edges of weight 1), and the source and sink of Gpop(i) are the source of G(1), and the sink of G(i−1).

G(1) G(2) G(3) . . . G(i−2) G(i−1)

Fig. 24: Gadget Gpop(i)

For each j ∈ [n], let the source-to-sink graph G′
(j) be as shown in Figure 25. Every edge has a weight 1 in this

graph.

For each i ∈ [n], let the source-to-sink graph Gpush(i) be constructed by placing the graphs
G′

(i−1),G
′
(i−2), . . . ,G′

(1) in series (see Figure 26). That is, for all 2 ⩽ j ⩽ i− 1, the sink of G′
(j) is connected to the

source of G′
(j−1) (with edges of weight 1), and the source and sink of Gpush(i) are the source of G′

(i−1), and the
sink of G′

(1).
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pop2
(⟨0, j⟩)

pop
2 (⟨1, j⟩)

push
1 (⟨0, j⟩)

push1
(⟨1, j⟩)

Fig. 25: Gadget G′
(j)

G′
(i−1) G′

(i−2) G′
(i−3) . . . G′

(2) G′
(1)

Fig. 26: Gadget Gpush(i)

We will now construct new graph gadgets Gout(i) (for each i ∈ [n]) as shown in Figure 27, and Gin as shown
in Figure 28.

Gpop(3)

Gpop(2)

Gpop(1)

...

Gpop(n)

...

Gpush(3)

Gpush(2)

Gpush(1)

...

Gpush(n)

...

pop1(⟨0, 1⟩)
xi,1

pop1(⟨0, 2⟩)
xi,2

pop1(⟨0, 3⟩)
xi,3

pop1(⟨0,n⟩)
xi,n

push1(⟨1, 1⟩)

push1(⟨1, 2⟩)

push1(⟨1, 3⟩)

push1(⟨1,n⟩)

push1(⟨1⟩)

push1(⟨2⟩)

push1(⟨3⟩)

push1(⟨n⟩)

Fig. 27: Gadget Gout(i)

We now get the 2-stack branching program G by placing the graph gadgets G′, n many copies of Gin, and G′′

in series (with connecting edges of weight 1 and no associated stack operations) as shown in Figure 29.

For every cyclic permutation, there exists a unique 2-stack realizable path: For an arbitrary cyclic
permutation π : [n] 7→ [n], let the corresponding monomial be xi1,i2xi2,i3xi3,i4 . . . xin,i1 where i1 = 1 and
i2, . . . , in−1 ∈ [n] \ {1} are distinct. Note that π(ij) = ij+1 (for all 1 ⩽ j ⩽ n− 1) and π(in−1) = 1. We will first
identify a 2-stack realizable path corresponding to this cyclic permutation.

Note that the construction of G uses n many copies of Gin in series. We use the notation G
(j)
in to refer to the jth

copy of Gin in series. For each j ∈ [n] choose a source-to-sink path in the graph gadget G(j)
in that goes through

the edge with stack operation pop(⟨ij⟩) and in the graph gadget Gout(ij) choose the 2-stack realizable path that

goes through the edge with weight xij,π(ij). Let us call the 2-stack realizable path in this graph gadget G(j)
in as Pj.
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...

Gout(3)

Gout(2)

Gout(1)

...

Gout(n)

pop1(⟨1⟩)

pop1(⟨2⟩)

pop1(⟨3⟩)

pop1(⟨n⟩)

Fig. 28: Gadget Gin

G′ Gin Gin . . . Gin G′′
push1(⟨1⟩) pop1(⟨1⟩)

n

Fig. 29: Gadget connections for hamiltonian cycle

Note that at the end of each graph gadget G(j)
in , the letter ⟨π(ij)⟩ is at the top of stack S1. Thus, in the next gadget

G
(j+1)
in a 2-stack realizable path is the one that pops the head ⟨π(ij)⟩ from the stack and takes the stack realizable

paths in the corresponding copies of Gpush and Gpop. Taking all these paths G′,P1, . . . ,Pn,G′′ in series gives us a
2-stack realizable source-to-sink path in G whose weight is equal to xi1,i2xi2,i3xi3,i4 . . . xin,i1 . It is easy to see that
the uniqueness of a source-to-sink path for a given cyclic permutation also follows from the same arguments.

Every 2-stack realizable path maps to a unique cyclic permutation: Gadgets Gin and Gout ensure that
each monomial corresponds to a path. The number of Gin gadgets is n; therefore, the monomials correspond to
paths of length n. The push1(⟨1⟩) operation at the start and the pop1(⟨1⟩) operation at the end ensure that the
path begins and ends at vertex 1. Gadgets G′ and G′′ ensure that each vertex is visited exactly once. Putting it all
together, it is clear that each 2-stack realizable path corresponds to a Hamiltonian cycle. ⊓⊔

C Queue Branching Programs

Queue branching programs: With queue the operation associated with it are insert(s) and remove(s). Let P =
op1,op2, . . . ,opr be a sequence of queue operations. Let countInsert(P,insert(s), i) denote the count of insert
operations that occur before the ith occurance of the insert(s) operation, and let countRemove(P,remove(s), i)
denote the count of remove operations that occur before the ith occurrence of the remove(s) operation. P is a
queue realizable sequence if the following conditions hold.

– ∀s ∈ Σ, occ(P,insert(s)) = occ(P,remove(s)), and
– ∀s ∈ Σ, countInsert(P,insert(s), i) = countRemove(P,remove(s), i).

Queue realizable sequences can be visualized as – starting with an empty queue, performing the operations in the
sequence onto the queue, and finally ending with an empty queue.
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Definition 7. A queue branching program (QBP) G is an algebraic branching program with an additional edge
labeling σ where

σ : E 7→ {op(s) | op ∈ {insert,remove}, s ∈ Σ} ∪ {nop}.

A source-to-sink path P = e1e2 . . . er has the sequence of queue operations σ(P) = σ(e1)σ(e2) . . .σ(er). The source-
to-sink path is said to be queue realizable if the sequence of queue operations is realizable. Polynomial f(x1, . . . , xn)
computed by a queue branching program is given by the sum of weights of all queue realizable s⇝ t paths.

f(x1, . . . , xn) =
∑

P:P∈s⇝t queue realizable paths

wt(P).

Definition 8. The class QBP consists of all polynomial families that can be computed by families of branching
programs augmented with a queue.

The study by Mengel [5] and the above sections together give a complete picture of the computational power
of k-stack branching programs (∀k ∈ N). We know that any set of operations performed on two stacks can be
efficiently simulated by a queue data structure and vice versa. Therefore, an analogous question to ask in this
setting would be whether a queue branching program exactly characterizes the class VNP. In this section we
answer this question in the affirmative.

Lemma 5. Any polynomial family computed by a polynomial-sized queue branching program is inside VNP.

The proof of this lemma is along the same lines of the proof for Lemma 1.

Lemma 6. For all n ∈ N, there exists a O(n3) sized queue branching program that computes the permanent
polynomial Permn.

Proof. Let Q be the queue. Let T be equal to {⟨b, i⟩ | b ∈ {0, 1}, i ∈ [n]}. Let the insert and remove operations be
denoted by insert(s) and remove(s) for some letter s ∈ T . As before, nop denotes no operation on the queue.
Recall that each edge of the underlying algebraic branching program has a weight which is a linear polynomial,
and associated queue operations.

Let G′ and G′′ be directed path graphs as shown in Figure 30 and Figure 31 respectively. Every edge has a
weight 1 in both of these graphs.

. . .
insert(⟨0, 1⟩) insert(⟨0, 2⟩) insert(⟨0,n⟩)

Fig. 30: Gadget G′

. . .
remove(⟨1, 1⟩) remove(⟨1, 2⟩) remove(⟨1,n⟩)

Fig. 31: Gadget G′′

For each j ∈ [n], the source-to-sink graph G(j) is as shown in Figure 32 with each edge having weight 1.
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remo
ve(⟨0

, j⟩)

remove(⟨1, j⟩)

insert(⟨0, j⟩)

inse
rt(⟨1

, j⟩)

Fig. 32: Gadget G(j)

G(1) G(2) G(3) . . . G(i−2) G(i−1)

Fig. 33: Gadget Gremove(i)

For each i ∈ [n], the gadget Gremove(i) is constructed by connecting the sink of G(1) with the source of G(2),
sink of G(2) with source of G(3) and so on till the sink of G(i−2) is connected to the source of G(i−1) as shown in
Figure 33. All edges used for these connections have weight 1 and queue operation nop.

For each i ∈ [n], the gadget G′
remove(i) is constructed by connecting the sink of G(i+1) to the source of G(i+2),

sink of G(i+2) with source of G(i+3) and so on till the sink of G(n−1) is connected to the source of G(n) as shown
in Figure 34. All edges used for these connections have weight 1 and queue operation nop.

G(i+1) G(i+2) G(i+3) . . . G(n−1) G(n)

Fig. 34: Gadget G′
remove(i)

For each i ∈ [n], let the source-to-sink graph Gmap(i) be constructed as shown in Figure 35. The source and
sink vertices of Gmap(i) are connected by n disjoint paths such that the jth path (for all 1 ⩽ j ⩽ n) is obtained by
connecting the source vertex, gadget Gremove(j), a single vertex (say vmap(i),j), gadget G′

remove(j) and sink vertex in
series. All edges have weight 1 and queue operation nop except for the edge connecting sink of gadget Gremove(i)
to vmap(i),j and the edge connecting vmap(i),j to source of G′

remove(i). The edge connecting sink of Gremove(i) to
vmap(i),j has weight xij and queue operation remove(⟨0, j⟩). The edge connecting vmap(i),j to source of G′

remove(i)
has weight 1 and queue operation insert(⟨1, j⟩).

We now claim that the queue branching program G computes the polynomial Permn by placing the gadgets
G′, Gmap(1), . . ., Gmap(n), G′′ in series with edges having weight 1 and queue operation nop as shown in Figure 36.

To prove afore mentioned claim, it is sufficient to prove that there exists a bijection between queue realizable
paths in G and monomials corresponding to permutations.

Every queue realizable path maps to a unique permutation: For all i ∈ [n], the weight of the jth source-to-
sink path in graph gadget Gmap(i) is xi,j. Therefore, any source-to-sink path in graph G will compute a monomial
of the following form. ∏

i

xi,ji where ji ∈ [n] for all i ∈ [n].

We now show that for any queue realizable path, the monomial computed corresponds to a permutation. Let this
monomial contain both xik and xik′ (i ̸= i′). This implies that the path with remove(⟨0,k⟩) queue operation
in graph gadget Gmap(i) and the path with remove(⟨0,k⟩) queue operation in graph gadget Gmap(i′) are chosen.
Once ⟨0,k⟩ is removed from the queue, it is never inserted back in. Therefore, any such source-to-sink path in G is
not queue realizable. Assume that the monomial computed contains both xik and xik′ . This is possible only if the
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Gremove(3)

Gremove(2)

Gremove(1)

...

Gremove(n)

...

G′
remove(3)

G′
remove(2)

G′
remove(1)

...

G′
remove(n)

remove(⟨0, 1⟩)
xi1

remove(⟨0, 2⟩)
xi2

remove(⟨0, 3⟩)
xi3

remove(⟨0, n⟩)
xin

insert(⟨1, 1⟩)

insert(⟨1, 2⟩)

insert(⟨1, 3⟩)

insert(⟨1,n⟩)

Fig. 35: Gadget Gmap(i)

G′ Gmap(1) Gmap(2) . . . Gmap(n) G′′

Fig. 36: Gadget connections for QBP computing permanent

path containing xik and the path containing xik′ in Gmap(i) are chosen. Since this is clearly not possible, such a
source-to-sink path is not queue realizable.

For the sake of contradiction, assume that two different queue realizable paths map to the same permutation.
Let the graph gadget Gmap(i) be where the paths diverge. Let one path take the jth edge and the other path take the
j′th edge. Clearly, one path outputs a monomial with xij in it and the other path outputs a monomial with xij′ in it.
Both paths do not output the same monomial. Putting everything together, we see that every queue realizable path
gets mapped to a unique permutation.

For every permutation, there exists a unique queue realizable path: Let π : [n] 7→ [n] be an arbitrary
permutation and π(i) denote the value i gets mapped to. Firstly, given a permutation, we identify a queue realizable
path that computes the monomial corresponding to the permutation. For all i ∈ [n], in graph gadget Gmap(i) select
the πth path within the graph gadget (let this path be Pi,π). Now we get G′, P1,π, . . ., Pn,π, G′′ as the source-to-sink
path Pπ in graph G. Every edge in each Pi,π contributes a weight of xi,π(i). All other edges in Pπ have weight 1.
Therefore, the monomial computed by source-to-sink path Pπ is

∏
i∈π xi,π(i). By careful observation, we can infer

that Pπ is queue realizable.

For the sake of contradiction, assume that two permutations π and π′ get mapped to the same queue realizable
path. ∏

i∈[n]

xi,π(i) ̸=
∏
i∈[n]

xi,π′(n)

Let j be the first index at which π and π ′ are distinct i.e., ∀1 ⩽ i < j ⩽ n, xiπ(i) = xiπ′(i) and xjπ(j) ̸= xjπ′(j).
Given a permutation, to get the corresponding queue realizable path, we need to select the path Pj,π in Gmap(j) to
get xj,π(j) and the path Pj,π′ in Gmap(j) to get xj,π′(j). Since we select exactly one path in graph gadget Gmap(i)
(for all i ∈ [n]), we cannot get the same queue realizable path for both permutations.

⊓⊔

Theorem 6. A polynomial family (fn) is in VNP if and only if there exists a polynomial-sized queue branching
program that computes it.
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Proof. The Lemma 5 shows that any polynomial computed by a polynomial-sized queue branching program
is inside VNP. Lemma 6 shows that VNP-complete polynomials can be computed by polynomial-sized queue
branching program. Finally, we notice that given a polynomial pn and a queue branching program computing it,
we can compute any p-projection of the polynomial by replacing every edge in the queue branching program that
is labelled by a variable with a ABP computing the corresponding linear form. These statements together tell us
that a VNP-complete polynomial can be computed by a queue branching program, queue branching programs can
simulate p-projections and any polynomial family computed by efficient queue branching programs are inside
VNP. Putting these points together, we get that a polynomial family is in VNP if and only if there exists an efficient
queue branching program computing it. ⊓⊔
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